| 研究生: |
洪翌凱 Hong, Yi-Kai |
|---|---|
| 論文名稱: |
研究腫瘤內皮標誌一在傷口修復的角色 Study on the Role of Tumor Endothelial Marker 1 in Skin Repair |
| 指導教授: |
吳華林
Wu, Hua-Lin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 腫瘤內皮標誌一 、皮膚傷口癒合 、蟹足腫 、血小板衍生生長因子 、轉化生長因子 |
| 外文關鍵詞: | Tumor endothelial marker 1, cutaneous wound healing, keloid, PDGF-BB, TGF-β1 |
| 相關次數: | 點閱:129 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腫瘤內皮標誌一亦可稱為內皮唾酸蛋白或CD248,是一個含有C型類凝集素區段的穿膜醣蛋白。它高度表現於周細胞與纖維母細胞。皮膚纖維母細胞在傷口癒合中的增生時期扮演重要的角色。然而,腫瘤內皮標誌一於傷口癒合中的生理功能仍然未知。老鼠背部傷口癒合的過程中,腫瘤內皮標誌一與血小板衍生生長因子接受器會高度表現於肌纖維母細胞。老鼠體內,腫瘤內皮標誌一的基因剔除會減少顆粒組織中纖維母細胞活化與膠原蛋白沉澱且減緩傷口癒合。體外細胞實驗中,腫瘤內皮標誌一的下調控會抑制NIH3T3纖維母細胞的爬行、貼附與增生能力。腫瘤內皮標誌一的下調能夠減緩血小板衍生生長因子所誘發的訊息傳遞、增生及吸引能力。此外,腫瘤內皮標誌一與血小板衍生生長因子接受器共位於纖維母細胞之次細胞胞器。藉由免疫共沉澱法發現腫瘤內皮標誌一與血小板衍生生長因子接受器產生交互作用。腫瘤內皮標誌一與血小板衍生生長因子接受器的交互作用,可藉由增強血小板衍生生長因子誘發的爬行、增生與肌纖維母細胞的膠原蛋白沉澱在傷口癒合扮演重要的角色。另外,腫瘤內皮標誌一專一的表現於類纖維母的細胞中,並參與各種器官的病理性纖維化形成。蟹足腫是一個皮膚上纖維增生的疾病,起因於不正常的傷口癒合。然而,腫瘤內皮標誌一對於影響蟹足腫機制尚未清楚。蟹足腫組織中,腫瘤內皮標誌一的表現上升,並與纖維母細胞活化標誌的表現有著強烈的相關性,這類活化標誌包含了平滑肌動蛋白α、第一型膠原蛋白、纖連蛋白、脯胺醯四羥化酶次單位β、血小板衍生生長因子接受器α。此外,相對於正常纖維母細胞,在蟹足腫纖維母細胞中可以發現腫瘤內皮標誌一表現量的上升。而蟹足腫纖維母細胞有著較強的增生、爬行及侵襲能力。因此,腫瘤內皮標誌一基因下調減少了蟹足腫纖維母細胞的增生、爬行及侵襲。在轉染腫瘤內皮標誌一微小干擾核醣核酸後的皮膚纖維母細胞中,轉化生長因子-β1誘發的訊息傳導與纖維母細胞活化是減緩的。腫瘤內皮標誌一基因下調造成轉化生長因子第二接受器快速降解與caveolin-1蛋白表現的減少。在蟹足腫的組織中,腫瘤內皮標誌一與轉化生長因子第二接受器表現上升,並彼此共位。此外,在皮膚的纖維母細胞中,發現腫瘤內皮標誌一與轉化生長因子第二接受器共位存在於次細胞胞器,並利用免疫共沉澱法證明彼此的交互作用。MORAb-004為對抗腫瘤內皮標誌一的抗體,於異體移植裸鼠膜式中,此抗體能有效縮小蟹足腫病灶大小。這些結果揭開了腫瘤內皮標誌一與轉化生長因子第二接受器彼此有交互作用,藉由調控轉化生長因子誘發的纖維母細胞增生與肌纖維母細胞的轉換,可在纖維母細胞的活化過程中扮演舉足輕重的角色。腫瘤內皮標誌一與轉化生長因子的交互作用,特別對於蟹足腫病理狀態的形成有顯著意義的貢獻。總結來說,適量腫瘤內皮標誌一表現能促進皮膚傷口癒合,然而過量腫瘤內皮標誌一表現會造成蟹足腫疤痕形成。
Tumor endothelial marker 1 (TEM1), also known as endosialin or CD248, is a type I transmembrane glycoprotein containing a C-type lectin-like domain. It is highly expressed in pericytes and fibroblasts. Dermal fibroblasts play a pivotal role in cutaneous wound healing, especially in the proliferative phase. However, the physiological function of TEM1 in wound healing is still undetermined. During the process of wound healing in the back of mice, both TEM1 and platelet-derived growth factor (PDGF) receptor α (PDGFRα) expressions were highly upregulated in myofibroblasts. In vivo, fibroblast activation and collagen deposition in granulation tissues were attenuated in the wound, and wound healing was retarded in TEM1-deleted mice. In vitro, the migration, adhesion, and proliferation of NIH3T3 cells were suppressed following TEM1 knockdown by short hairpin RNA. In PDGF-BB-treated NIH3T3 cells, the downstream signal, mitogenic, and chemoattractive effects were inhibited by TEM1 knockdown. Additionally, TEM1 and PDGFRα were co-localized in sub-cellular organelles in fibroblasts and the association of TEM1 and PDGFRα was demonstrated by co-immunoprecipitation. These findings suggested that TEM1, in combination with PDGFRα, plays a critical role in wound healing by enhancing the mitogenic and chemoattractive effects of PDGF-BB and collagen deposition in myofibroblasts. On the other hand, TEM1 is specifically expressed in fibroblast-like cells and participates in pathological fibrogenesis of multiple organs. Keloid is a type of fibroproliferative skin disease resulting from abnormal wound healing. However, the critical involvement of TEM1 in keloid scars remains unclear. We demonstrated that TEM1 expression was significantly increased in keloid tissues. An increase in TEM1 expression of keloid tissues in comparison to normal tissues was strongly associated with the massively upregulated expression of various activation markers of fibroblasts, including α-smooth muscle actin, type I collagen, fibronectin, prolyl 4-hydroxylase subunit β, and PDGFRα. The elevation of TEM1 expression was observed in keloid fibroblasts compared with normal fibroblasts in vitro. Keloid fibroblasts exhibit higher activities in proliferation, migration and invasion than normal fibroblasts. TEM1 silencing in keloid fibroblasts led to a decrease in activities of the cell proliferation, migration, and invasion. The extent of signal transduction and fibroblast activation induced by transforming growth factor (TGF)-β1 in dermal fibroblasts were alleviated when TEM1 gene expression was suppressed. A rapid degradation of TGF-β receptor II and the increased protein level of caveolin-1 expression were found in TEM1-knockdown dermal fibroblasts. Both TEM1 and TGF-β receptor II expressions were upregulated and co-localized mutually in keloid tissues. Furthermore, TEM1 and TGF-β receptor II were co-localized in sub-cellular organelles in dermal fibroblasts. The interaction of TEM1 and TGF-β receptor II was validated using co-immunoprecipitation. MORAb-004 treatment, which is a humanized monoclonal antibody against TEM1, decreased the lesion size of keloid in xenograft nude mouse model. These results uncovered that TEM1 in cooperation with TGF-β receptor II plays a pivotal role in the activation of fibroblasts by augmenting TGF-β-mediated effects on cell proliferation and transition of dermal fibroblasts to myofibroblasts. The synergistic effect of TEM1 on TGF-β signaling pathway might have a significant contribution to the pathogenesis of keloid. In conclusion, adequate TEM1 expression facilitates cutaneous wound healing, while excessive TEM1 expression leads to keloid scar formation.
1. Akbar M, McLean M, Garcia-Melchor E, Crowe LA, McMillan P, Fazzi UG, et al. Fibroblast activation and inflammation in frozen shoulder. 2019;14(4):e0215301.
2. Ashcroft GS, Mills SJ, Lei K, Gibbons L, Jeong MJ, Taniguchi M, et al. Estrogen modulates cutaneous wound healing by downregulating macrophage migration inhibitory factor. The Journal of clinical investigation 2003;111(9):1309-18.
3. Babu M, Diegelmann R, Oliver N. Keloid fibroblasts exhibit an altered response to TGF-beta. The Journal of investigative dermatology 1992;99(5):650-5.
4. Bagley RG, Honma N, Weber W, Boutin P, Rouleau C, Shankara S, et al. Endosialin/TEM 1/CD248 is a pericyte marker of embryonic and tumor neovascularization. Microvascular research 2008;76(3):180-8.
5. Bakhtyar N, Jeschke MG, Herer E, Sheikholeslam M, Amini-Nik S. Exosomes from acellular Wharton's jelly of the human umbilical cord promotes skin wound healing. 2018;9(1):193.
6. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society 2008;16(5):585-601.
7. Bartis D, Crowley LE, D'Souza VK, Borthwick L, Fisher AJ, Croft AP, et al. Role of CD248 as a potential severity marker in idiopathic pulmonary fibrosis. BMC Pulm Med 2016;16(1):51.
8. Beer HD, Longaker MT, Werner S. Reduced expression of PDGF and PDGF receptors during impaired wound healing. The Journal of investigative dermatology 1997;109(2):132-8.
9. Boyce DE, Ciampolini J, Ruge F, Murison MS, Harding KG. Inflammatory-cell subpopulations in keloid scars. Br J Plast Surg 2001;54(6):511-6.
10. Brady J, Neal J, Sadakar N, Gasque P. Human endosialin (tumor endothelial marker 1) is abundantly expressed in highly malignant and invasive brain tumors. Journal of neuropathology and experimental neurology 2004;63(12):1274-83.
11. Brett E, Zielins ER, Chin M, Januszyk M, Blackshear CP, Findlay M, et al. Isolation of CD248-expressing stromal vascular fraction for targeted improvement of wound healing. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society 2017;25(3):414-22.
12. Broughton G, 2nd, Janis JE, Attinger CE. The basic science of wound healing. Plastic and reconstructive surgery 2006;117(7 Suppl):12s-34s.
13. Brown BC, McKenna SP, Siddhi K, McGrouther DA, Bayat A. The hidden cost of skin scars: quality of life after skin scarring. J Plast Reconstr Aesthet Surg 2008;61(9):1049-58.
14. Campbell L, Emmerson E, Davies F, Gilliver SC, Krust A, Chambon P, et al. Estrogen promotes cutaneous wound healing via estrogen receptor beta independent of its antiinflammatory activities. The Journal of experimental medicine 2010;207(9):1825-33.
15. Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW, St Croix B. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer research 2001;61(18):6649-55.
16. Chen YG. Endocytic regulation of TGF-beta signaling. Cell research 2009;19(1):58-70.
17. Cheng TL, Wu YT, Lin HY, Hsu FC, Liu SK, Chang BI, et al. Functions of rhomboid family protease RHBDL2 and thrombomodulin in wound healing. The Journal of investigative dermatology 2011;131(12):2486-94.
18. Chin GS, Liu W, Peled Z, Lee TY, Steinbrech DS, Hsu M, et al. Differential expression of transforming growth factor-beta receptors I and II and activation of Smad 3 in keloid fibroblasts. Plastic and reconstructive surgery 2001;108(2):423-9.
19. Christian S, Ahorn H, Koehler A, Eisenhaber F, Rodi HP, Garin-Chesa P, et al. Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumor endothelium. The Journal of biological chemistry 2001;276(10):7408-14.
20. Christian S, Winkler R, Helfrich I, Boos AM, Besemfelder E, Schadendorf D, et al. Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. The American journal of pathology 2008;172(2):486-94.
21. Craig SS, DeBlois G, Schwartz LB. Mast cells in human keloid, small intestine, and lung by an immunoperoxidase technique using a murine monoclonal antibody against tryptase. The American journal of pathology 1986;124(3):427-35.
22. Darby I, Skalli O, Gabbiani G. Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Laboratory investigation; a journal of technical methods and pathology 1990;63(1):21-9.
23. Darby IA, Laverdet B, Bonte F, Desmouliere A. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol 2014;7:301-11.
24. Deuel TF, Kawahara RS, Mustoe TA, Pierce AF. Growth factors and wound healing: platelet-derived growth factor as a model cytokine. Annual review of medicine 1991;42:567-84.
25. Di Benedetto P, Liakouli V, Ruscitti P, Berardicurti O, Carubbi F, Panzera N, et al. Blocking CD248 molecules in perivascular stromal cells of patients with systemic sclerosis strongly inhibits their differentiation toward myofibroblasts and proliferation: a new potential target for antifibrotic therapy. Arthritis research & therapy 2018;20(1):223.
26. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL. Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nature cell biology 2003;5(5):410-21.
27. Doi T, Aramaki T, Yasui H, Muro K, Ikeda M, Okusaka T, et al. A phase I study of ontuxizumab, a humanized monoclonal antibody targeting endosialin, in Japanese patients with solid tumors. Investigational new drugs 2019.
28. Driskell RR, Lichtenberger BM, Hoste E, Kretzschmar K, Simons BD, Charalambous M, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 2013;504(7479):277-81.
29. Friedman DW, Boyd CD, Mackenzie JW, Norton P, Olson RM, Deak SB. Regulation of collagen gene expression in keloids and hypertrophic scars. The Journal of surgical research 1993;55(2):214-22.
30. Fujii S, Fujihara A, Natori K, Abe A, Kuboki Y, Higuchi Y, et al. TEM1 expression in cancer-associated fibroblasts is correlated with a poor prognosis in patients with gastric cancer. Cancer medicine 2015;4(11):1667-78.
31. Gao Z, Sasaoka T, Fujimori T, Oya T, Ishii Y, Sabit H, et al. Deletion of the PDGFR-beta gene affects key fibroblast functions important for wound healing. The Journal of biological chemistry 2005;280(10):9375-89.
32. Gharibi B, Ghuman MS, Hughes FJ. Akt- and Erk-mediated regulation of proliferation and differentiation during PDGFRbeta-induced MSC self-renewal. Journal of cellular and molecular medicine 2012;16(11):2789-801.
33. Gira AK, Brown LF, Washington CV, Cohen C, Arbiser JL. Keloids demonstrate high-level epidermal expression of vascular endothelial growth factor. J Am Acad Dermatol 2004;50(6):850-3.
34. Groeneveld ME, Bogunovic N, Musters RJP, Tangelder GJ, Pals G, Wisselink W, et al. Betaglycan (TGFBR3) up-regulation correlates with increased TGF-beta signaling in Marfan patient fibroblasts in vitro. Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology 2018;32:44-9.
35. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature 2008;453(7193):314-21.
36. Haisa M, Okochi H, Grotendorst GR. Elevated levels of PDGF alpha receptors in keloid fibroblasts contribute to an enhanced response to PDGF. The Journal of investigative dermatology 1994;103(4):560-3.
37. Hardy RS, Hulso C, Liu Y, Gasparini SJ, Fong-Yee C, Tu J, et al. Characterisation of fibroblast-like synoviocytes from a murine model of joint inflammation. Arthritis research & therapy 2013;15(1):R24.
38. Hasanov Z, Ruckdeschel T, Konig C, Mogler C, Kapel SS, Korn C, et al. Endosialin Promotes Atherosclerosis Through Phenotypic Remodeling of Vascular Smooth Muscle Cells. Arteriosclerosis, thrombosis, and vascular biology 2017;37(3):495-505.
39. Heldin CH. Targeting the PDGF signaling pathway in tumor treatment. Cell communication and signaling : CCS 2013;11:97.
40. Heldin CH, Ostman A, Eriksson A, Siegbahn A, Claesson-Welsh L, Westermark B. Platelet-derived growth factor: isoform-specific signalling via heterodimeric or homodimeric receptor complexes. Kidney international 1992;41(3):571-4.
41. Hong YK, Lee YC, Cheng TL, Lai CH, Hsu CK, Kuo CH, et al. Tumor Endothelial Marker 1 (TEM1/Endosialin/CD248) Enhances Wound Healing by Interacting with Platelet-Derived Growth Factor Receptors. The Journal of investigative dermatology 2019.
42. Hsu CK, Lin HH, Harn HI, Ogawa R, Wang YK, Ho YT, et al. Caveolin-1 Controls Hyperresponsiveness to Mechanical Stimuli and Fibrogenesis-Associated RUNX2 Activation in Keloid Fibroblasts. The Journal of investigative dermatology 2018;138(1):208-18.
43. Huang HP, Hong CL, Kao CY, Lin SW, Lin SR, Wu HL, et al. Gene targeting and expression analysis of mouse Tem1/endosialin using a lacZ reporter. Gene expression patterns : GEP 2011;11(5-6):316-26.
44. Hunt TK. The physiology of wound healing. Annals of emergency medicine 1988;17(12):1265-73.
45. Inoue Y, Imamura T. Regulation of TGF-beta family signaling by E3 ubiquitin ligases. Cancer science 2008;99(11):2107-12.
46. Ishiko T, Naitoh M, Kubota H, Yamawaki S, Ikeda M, Yoshikawa K, et al. Chondroitinase injection improves keloid pathology by reorganizing the extracellular matrix with regenerated elastic fibers. J Dermatol 2013;40(5):380-3.
47. Iyengar PV. Regulation of Ubiquitin Enzymes in the TGF-beta Pathway. International journal of molecular sciences 2017;18(4).
48. Jagadeesan J, Bayat A. Transforming growth factor beta (TGFbeta) and keloid disease. International journal of surgery (London, England) 2007;5(4):278-85.
49. Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Frontiers in pharmacology 2014;5:123.
50. Kirkbride KC, Ray BN, Blobe GC. Cell-surface co-receptors: emerging roles in signaling and human disease. Trends in biochemical sciences 2005;30(11):611-21.
51. Krafts KP. Tissue repair: The hidden drama. Organogenesis 2010;6(4):225-33.
52. Krane JF, Murphy DP, Gottlieb AB, Carter DM, Hart CE, Krueger JG. Increased dermal expression of platelet-derived growth factor receptors in growth-activated skin wounds and psoriasis. The Journal of investigative dermatology 1991;96(6):983-6.
53. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2004;18(7):816-27.
54. Lee JY, Yang CC, Chao SC, Wong TW. Histopathological differential diagnosis of keloid and hypertrophic scar. The American Journal of dermatopathology 2004;26(5):379-84.
55. Lee NY, Ray B, How T, Blobe GC. Endoglin promotes transforming growth factor beta-mediated Smad 1/5/8 signaling and inhibits endothelial cell migration through its association with GIPC. The Journal of biological chemistry 2008;283(47):32527-33.
56. Lees JG, Ching YW, Adams DH, Bach CT, Samuel MS, Kee AJ, et al. Tropomyosin regulates cell migration during skin wound healing. The Journal of investigative dermatology 2013;133(5):1330-9.
57. Lei R, Li J, Liu F, Li W. HIF-1alpha promotes the keloid development through the activation of TGF-beta/Smad and TLR4/MyD88/NF-kappaB pathways. 2019;18(23):3239-50.
58. Li C, Chacko AM, Hu J, Hasegawa K, Swails J, Grasso L, et al. Antibody-based tumor vascular theranostics targeting endosialin/TEM1 in a new mouse tumor vascular model. Cancer biology & therapy 2014;15(4):443-51.
59. Lim CP, Phan TT, Lim IJ, Cao X. Stat3 contributes to keloid pathogenesis via promoting collagen production, cell proliferation and migration. Oncogene 2006;25(39):5416-25.
60. MacFadyen J, Savage K, Wienke D, Isacke CM. Endosialin is expressed on stromal fibroblasts and CNS pericytes in mouse embryos and is downregulated during development. Gene expression patterns : GEP 2007;7(3):363-9.
61. Maia M, de Vriese A, Janssens T, Moons M, van Landuyt K, Tavernier J, et al. CD248 and its cytoplasmic domain: a therapeutic target for arthritis. Arthritis and rheumatism 2010;62(12):3595-606.
62. Maia M, DeVriese A, Janssens T, Moons M, Lories RJ, Tavernier J, et al. CD248 facilitates tumor growth via its cytoplasmic domain. BMC cancer 2011;11:162.
63. Mari W, Alsabri SG, Tabal N, Younes S, Sherif A, Simman R. Novel Insights on Understanding of Keloid Scar: Article Review. The journal of the American College of Clinical Wound Specialists 2015;7(1-3):1-7.
64. Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol 2015;173(2):370-8.
65. Mills SJ, Ashworth JJ, Gilliver SC, Hardman MJ, Ashcroft GS. The sex steroid precursor DHEA accelerates cutaneous wound healing via the estrogen receptors. The Journal of investigative dermatology 2005;125(5):1053-62.
66. Mogler C, Konig C, Wieland M, Runge A, Besemfelder E, Komljenovic D, et al. Hepatic stellate cells limit hepatocellular carcinoma progression through the orphan receptor endosialin. 2017;9(6):741-9.
67. Mogler C, Wieland M, Konig C, Hu J, Runge A, Korn C, et al. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage. EMBO molecular medicine 2015;7(3):332-8.
68. Momtazi M, Kwan P, Ding J, Anderson CC, Honardoust D, Goekjian S, et al. A nude mouse model of hypertrophic scar shows morphologic and histologic characteristics of human hypertrophic scar. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society 2013;21(1):77-87.
69. Myles ME, Russell JD, Trupin JS, Smith JC, Russell SB. Keloid fibroblasts are refractory to inhibition of DNA synthesis by phorbol esters. Altered response is accompanied by reduced sensitivity to prostaglandin E2 and altered down-regulation of phorbol ester binding sites. The Journal of biological chemistry 1992;267(13):9014-20.
70. Nanda A, Karim B, Peng Z, Liu G, Qiu W, Gan C, et al. Tumor endothelial marker 1 (Tem1) functions in the growth and progression of abdominal tumors. Proceedings of the National Academy of Sciences of the United States of America 2006;103(9):3351-6.
71. O'Sullivan ST, O'Shaughnessy M, O'Connor TP. Aetiology and management of hypertrophic scars and keloids. Ann R Coll Surg Engl 1996;78(3 ( Pt 1)):168-75.
72. Ohradanova A, Gradin K, Barathova M, Zatovicova M, Holotnakova T, Kopacek J, et al. Hypoxia upregulates expression of human endosialin gene via hypoxia-inducible factor 2. British journal of cancer 2008;99(8):1348-56.
73. Opavsky R, Haviernik P, Jurkovicova D, Garin MT, Copeland NG, Gilbert DJ, et al. Molecular characterization of the mouse Tem1/endosialin gene regulated by cell density in vitro and expressed in normal tissues in vivo. The Journal of biological chemistry 2001;276(42):38795-807.
74. Petrus P, Fernandez TL, Kwon MM, Huang JL, Lei V, Safikhan NS, et al. Specific loss of adipocyte CD248 improves metabolic health via reduced white adipose tissue hypoxia, fibrosis and inflammation. EBioMedicine 2019;44:489-501.
75. Pierce GF, Mustoe TA, Altrock BW, Deuel TF, Thomason A. Role of platelet-derived growth factor in wound healing. Journal of cellular biochemistry 1991;45(4):319-26.
76. Qiu J, Zheng Y, Hu J, Liao D, Gregersen H, Deng X, et al. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding. Journal of the Royal Society, Interface 2014;11(90):20130852.
77. Rajkumar VS, Shiwen X, Bostrom M, Leoni P, Muddle J, Ivarsson M, et al. Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. The American journal of pathology 2006;169(6):2254-65.
78. Rao KB, Malathi N, Narashiman S, Rajan ST. Evaluation of myofibroblasts by expression of alpha smooth muscle actin: a marker in fibrosis, dysplasia and carcinoma. Journal of clinical and diagnostic research : JCDR 2014;8(4):Zc14-7.
79. Razani B, Zhang XL, Bitzer M, von Gersdorff G, Bottinger EP, Lisanti MP. Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. The Journal of biological chemistry 2001;276(9):6727-38.
80. Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Jaffe EA, Old LJ. Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proceedings of the National Academy of Sciences of the United States of America 1992;89(22):10832-6.
81. Reuterdahl C, Sundberg C, Rubin K, Funa K, Gerdin B. Tissue localization of beta receptors for platelet-derived growth factor and platelet-derived growth factor B chain during wound repair in humans. The Journal of clinical investigation 1993;91(5):2065-75.
82. Rippa AL, Kalabusheva EP, Vorotelyak EA. Regeneration of Dermis: Scarring and Cells Involved. 2019;8(6).
83. Rockey DC, Weymouth N, Shi Z. Smooth muscle alpha actin (Acta2) and myofibroblast function during hepatic wound healing. PloS one 2013;8(10):e77166.
84. Ross R, Raines EW, Bowen-Pope DF. The biology of platelet-derived growth factor. Cell 1986;46(2):155-69.
85. Rupp C, Dolznig H, Puri C, Sommergruber W, Kerjaschki D, Rettig WJ, et al. Mouse endosialin, a C-type lectin-like cell surface receptor: expression during embryonic development and induction in experimental cancer neoangiogenesis. Cancer immunity 2006;6:10.
86. Russell SB, Trupin JS, Kennedy RZ, Russell JD, Davidson JM. Glucocorticoid regulation of elastin synthesis in human fibroblasts: down-regulation in fibroblasts from normal dermis but not from keloids. The Journal of investigative dermatology 1995;104(2):241-5.
87. Rybinski K, Imtiyaz HZ, Mittica B, Drozdowski B, Fulmer J, Furuuchi K, et al. Targeting endosialin/CD248 through antibody-mediated internalization results in impaired pericyte maturation and dysfunctional tumor microvasculature. Oncotarget 2015;6(28):25429-40.
88. Santibanez JF, Quintanilla M, Bernabeu C. TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clinical science (London, England : 1979) 2011;121(6):233-51.
89. Shih B, Garside E, McGrouther DA, Bayat A. Molecular dissection of abnormal wound healing processes resulting in keloid disease. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society 2010;18(2):139-53.
90. Shinde AV, Humeres C, Frangogiannis NG. The role of alpha-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochimica et biophysica acta 2017;1863(1):298-309.
91. Singer AJ, Clark RA. Cutaneous wound healing. The New England journal of medicine 1999;341(10):738-46.
92. Smith SW, Croft AP, Morris HL, Naylor AJ, Huso DL, Isacke CM, et al. Genetic Deletion of the Stromal Cell Marker CD248 (Endosialin) Protects against the Development of Renal Fibrosis. Nephron 2015;131(4):265-77.
93. Smith SW, Eardley KS, Croft AP, Nwosu J, Howie AJ, Cockwell P, et al. CD248+ stromal cells are associated with progressive chronic kidney disease. Kidney international 2011;80(2):199-207.
94. Sperka T, Geissler KJ, Merkel U, Scholl I, Rubio I, Herrlich P, et al. Activation of Ras requires the ERM-dependent link of actin to the plasma membrane. PloS one 2011;6(11):e27511.
95. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, et al. Genes expressed in human tumor endothelium. Science (New York, NY) 2000;289(5482):1197-202.
96. Suarez E, Syed F, Alonso-Rasgado T, Bayat A. Identification of biomarkers involved in differential profiling of hypertrophic and keloid scars versus normal skin. Archives of dermatological research 2015;307(2):115-33.
97. Sziksz E, Pap D, Lippai R, Beres NJ, Fekete A, Szabo AJ, et al. Fibrosis Related Inflammatory Mediators: Role of the IL-10 Cytokine Family. Mediators of inflammation 2015;2015:764641.
98. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002;3(5):349-63.
99. Tomkowicz B, Rybinski K, Foley B, Ebel W, Kline B, Routhier E, et al. Interaction of endosialin/TEM1 with extracellular matrix proteins mediates cell adhesion and migration. Proceedings of the National Academy of Sciences of the United States of America 2007;104(46):17965-70.
100. Tomkowicz B, Rybinski K, Sebeck D, Sass P, Nicolaides NC, Grasso L, et al. Endosialin/TEM-1/CD248 regulates pericyte proliferation through PDGF receptor signaling. Cancer biology & therapy 2010;9(11):908-15.
101. Tracy LE, Minasian RA, Caterson EJ. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Advances in wound care 2016;5(3):119-36.
102. Tredget EE, Nedelec B, Scott PG, Ghahary A. Hypertrophic scars, keloids, and contractures. The cellular and molecular basis for therapy. Surg Clin North Am 1997;77(3):701-30.
103. Tuan TL, Nichter LS. The molecular basis of keloid and hypertrophic scar formation. Molecular medicine today 1998;4(1):19-24.
104. Valdez Y, Maia M, Conway EM. CD248: reviewing its role in health and disease. Current drug targets 2012;13(3):432-9.
105. Vander Ark A, Cao J, Li X. TGF-beta receptors: In and beyond TGF-beta signaling. Cellular signalling 2018;52:112-20.
106. Viski C, Konig C, Kijewska M, Mogler C, Isacke CM, Augustin HG. Endosialin-Expressing Pericytes Promote Metastatic Dissemination. Cancer research 2016;76(18):5313-25.
107. Wang W, Qu M, Xu L, Wu X, Gao Z, Gu T, et al. Sorafenib exerts an anti-keloid activity by antagonizing TGF-beta/Smad and MAPK/ERK signaling pathways. Journal of molecular medicine (Berlin, Germany) 2016;94(10):1181-94.
108. Weiskirchen R, Weiskirchen S, Tacke F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Molecular aspects of medicine 2019;65:2-15.
109. Wilhelm A, Aldridge V, Haldar D, Naylor AJ, Weston CJ, Hedegaard D, et al. CD248/endosialin critically regulates hepatic stellate cell proliferation during chronic liver injury via a PDGF-regulated mechanism. Gut 2016;65(7):1175-85.
110. Wollin L, Wex E, Pautsch A, Schnapp G, Hostettler KE, Stowasser S, et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. The European respiratory journal 2015;45(5):1434-45.
111. Yakymovych I, Yakymovych M, Heldin CH. Intracellular trafficking of transforming growth factor beta receptors. Acta biochimica et biophysica Sinica 2018;50(1):3-11.
112. Yu J, Ustach C, Kim HR. Platelet-derived growth factor signaling and human cancer. Journal of biochemistry and molecular biology 2003;36(1):49-59.
113. Zhao B, Guan H, Liu JQ, Zheng Z, Zhou Q, Zhang J, et al. Hypoxia drives the transition of human dermal fibroblasts to a myofibroblast-like phenotype via the TGF-beta1/Smad3 pathway. International journal of molecular medicine 2017;39(1):153-9.
114. Zhao B, Wang Q, Du J, Luo S, Xia J, Chen YG. PICK1 promotes caveolin-dependent degradation of TGF-beta type I receptor. Cell research 2012;22(10):1467-78.
115. Zuo W, Huang F, Chiang YJ, Li M, Du J, Ding Y, et al. c-Cbl-mediated neddylation antagonizes ubiquitination and degradation of the TGF-beta type II receptor. Molecular cell 2013;49(3):499-510.