| 研究生: |
蔡沐翰 Tsai, Mu-Han |
|---|---|
| 論文名稱: |
基於專用短距離通訊與模型預測控制之主動式防撞系統發展 Development of an Active Collision Avoidance System Based on Dedicated Short Range Communication and Model Predictive Control |
| 指導教授: |
莊智清
Juang, Jyh-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 專用短距離通訊 、模型預測控制 、主動式防撞系統 |
| 外文關鍵詞: | Dedicated Short Range Communication, Model Predictive Control, Active Collision Avoidance |
| 相關次數: | 點閱:110 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在利用模型預測控制與專用短距離通訊發展主動式避撞系統。近年來,由於智慧型車安全系統的蓬勃發展,陸陸續續有人提出針對主動式行車安全議題相關之車輛安全系統。在本文中,首先分別探討適用在車輛運動模型及車輛動態模型相對應的模型預測控制理論;其中,前者的模型適用於低速行駛的車輛,而後者則可用於高動態上有側向滑動的車輛模型。依照模型預測控制上的限制,車輛的避撞路徑規劃及輪胎轉動的大小皆可由最佳化問題求得。此外,本論文亦使用專用短距離通訊發展車輛防撞系統,目的為監測車用行動通訊網路上的廣播訊息,並根據所需資訊進行專門的訊息分享達成即時的車輛避撞。車輛藉由GPS 接收器定出車輛的位置、速度,並利用車間通訊技術使得所有車輛皆可以避免碰撞的發生。最後,討論利用網路模擬器模擬車用行動通訊網路在不同情境下封包的品質,以確保真實環境中通訊對此防撞系統的影響。
The objective of this thesis is to develop an active collision avoidance system by using model predictive control and Dedicated Short Range Communication. In recent years, many researches about active collision avoidance system have been proposed to meet the needs of intelligent transportation systems. In this thesis, the model predictive control theory based on vehicle kinematic model and vehicle dynamic model are investigated, respectively. The former model is suitable for low speed vehicle and the latter one is suitable for high dynamic lateral sliding vehicle model. According to the constraint of model predictive control, the vehicle collision avoidance planning and the tire rotated angle can be obtained by solving an optimization problem. Furthermore, this research also develops a vehicle monitor system based on Dedicated Short Range Communication to collect the necessary information from Vehicular Ad-hoc Network. Vehicle collision system can then achieve real time collision avoidance via data analysis and customized message sharing. By receiving vehicle position and heading from GPS receiver, vehicle-to-vehicle communication technology can prevent the collision occurred. Finally, we can use network simulator to compute quality of service on Vehicular Ad-hoc Network in different situation to ensure the communication effect of the system in real environment.
[1] A. Bemporad and M. Morari, Robust Model Predictive control: A Survey, Springer, pp. 207-226, 1999.
[2] J. Barraquand and J.-C. Latombe, "On Nonholonomic Mobile Robots and Optimal Maneuvering,” IEEE International Symposium on Intelligent Control, pp.340-347, 1989.
[3] M. Efatmaneshnik, A. Kealy, A. T. Balaei, and A. G. Dempster, “Information Fusion for Localization Within Vehicular Networks,” The Journal of Navigation, Vol. 64, No. 3, pp. 401-416, 2011.
[4] B.S. Gukhool, and S. Cherkaoui , “IEEE 802.11p Modeling in NS-2,” IEEE Conference on Local Computer Networks, pp. 622-626, 2008.
[5] J. Guldner, H.-S. Tan, and S. Patwardhan, “Analysis of Automatic Steering Control for Highway Vehicle with Look-Down Lateral Reference Systems,” Vehicle Syst. Dynamics, Vol. 26, No. 4, pp. 243–269, 1996.
[6] J. Guldner, V. I. Utkin, and J. Ackermann, “A Sliding Mode Control Approach to Automatic Car Steering,” IEEE American Control Conference, Vol. 2, pp. 1969-1973, 1994.
[7] T. D. Gillespie, ”Fundamentals of Vehicle Dynamics,” SAE International, 1992.
[8] C. M. Huang and S.Y. Lin, “An Collision Pre-warning Algorithm Based on V2V Communication,” IEEE Ubiquitous Information Technologies and Applications, pp. 1-6, 2009.
[9] C. W. Hsu, C. N. Liang, L. Y. Ke, F. Y. Huang, “Verification of On-Line Vehicle Collision Avoidance Warning System Using DSRC”, World Academy of Science, Engineering and Technology, Vol. 55, pp. 377-383, 2009.
[10] IEEE P802.11p/D6. Draft Amendment for Wireless Access in Vehicular Environments (WAVE), March 2009.
[11] IEEE 1609.1-2006: IEEE Trial-Use Standard for Wireless Access in Vehicular Environments – (WAVE) Resource Manager.
[12] IEEE 1609.2-2006: IEEE Trial–Use Standard for Wireless Access in Vehicular Environments – Security Service for Applications and Management Messages.
[13] IEEE P1609.3 D1.0, Draft Standard for Wireless Access in Vehicular Environments (WAVE) – Multi-channel Operation, December 2008.
[14] IEEE P1609.4 D1.0, Draft Standard for Wireless Access in Vehicular Environments (WAVE) - Multi-channel Operation, December 2008.
[15] IEEE 802.11 Working Group, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, June 2007.
[16] R. N. Jazar, Vehicle Dynamics: Theory and Application, NY, Springer, 2008.
[17] F Kühne, W. F. Lages, J. M. G. da S. Jr, “Point Stabilization of Mobile Robots via State-Space Exact Feedback Linearization,” Robotics and Compute-Integrated Manufacturing, Vol. 6, No. 5, pp. 353-363, 2000.
[18] F. Kühne, W. F. Lages, J. M. G. da S. Jr, “Model Predictive Control of a Mobile Robot Using Linearization,” Proceedings of Mechatronics and Robotics, Vol. 4, 2004.
[19] F. Kühne, W. F. Lages, and J. M. G. da S. Jr., “Mobile Robot Trajectory Tracking Using Model Predictive Control,” VII SBAI / II IEEE LARS. São Luís, 2005.
[20] U. Kiencke and L. Nielsen, Automotive Control System for Engine, Driveline, and Vehicle(2nd ed), 2005.
[21] C.-S. Lin, B.-C. Chen, and J.-C. Lin, “Field test and performance improvement in IEEE 802.11p V2R/R2V environments,” IEEE International Conference on Communications, pp. 1-5, 2010.
[22] C. F. Lin, Ulsoy, A.G., and David J. LeBlanc, “Vehicle Dynamics and External Disturbance Estimation for Vehicle Path Prediction,” IEEE Transactions on Control Systems Technology, Vol. 8, No. 3, pp.508-581, 2000
[23] MathWorks, “Longitudinal Vehicle Dynamics,” 1984-2011 The MathWorks. Available: http://www.mathworks.com/help/toolbox/physmod/drive/longitudinalvehicledynamics.html
[24] MathWorks, “A Vehicle Dynamics System,” 1994-2011 The MathWorks. Available: http://www.mathworks.com/products/sysid/demos.html?file=/products/demos/shipping/idnlgreydemo11.html
[25] T. Murray, M. Cojocari, and H. Fu, “Measuring the Performance of IEEE 802.11p Using NS-2 Simulator for Vehicular Networks,” IEEE International Conference on Electro/Information Technology, pp. 498-503, 2008.
[26] R. Miller and Q. Huang, “An Adaptive Peer-to-Peer Collision Warning System,” IEEE Vehicular Technology Conference ,Vol. 1, pp. 317-321, 2002.
[27] J. E. Normey-Rico, J. Go´mez-Ortega, and E. F. Camacho, “A Smith-Predictor-Based Generalised Predictive Controller for Mobile Robot Path-Tracking,” Control Engineering Practice, Vol. 7, No. 6, pp. 729-740, 1999.
[28] H. B. Pacejka, Tyre and Vehicle Dynamics, SAE International and Elsevier, 2005.
[29] R. Rajamani, Vehicle Dynamics and Control, Springer, 2006.
[30] G. V. Raffo, G. K. Gomes, and J. E. Normey-Rico, “A Predictive Controller for Autonomous Vehicle Path Tracking,” IEEE Transactions on Intelligent Transportation Systems, Vol. 10, No. 1, pp. 92-102 , 2009.
[31] R. Rajamani, H. S. Tan, B. K. Law, and W. B. Zhang, “Demonstration of Integrated Longitudinal and Lateral Control for the Operation of Automated Vehicles in Platoons,” IEEE Transactions On Control Systems Technology, Vol. 8, No. 4, pp.695-708, 2000.
[32] F. D. Salim, S. W. Loke, A. Rakotonirainy, B. Srinivasan, and S. Krishnaswamy “Collision Pattern Modeling and Real-Time Collision Detection at Road Intersections,” IEEE Intelligent Transportation System Conference, pp. 161-166, 2007.
[33] L. Wang, Model Predictive Control System Design and Implementation Using MATLAB, Springer, 2009.
[34] F. Wang, M. Yang, and R. Yang, “Conflict-Probability-Estimation-Based Overtaking for Intelligent Vehicles,” IEEE Transactions on Intelligent Transportation Systems, Vol. 10, No. 2, pp. 366-370, 2009.
[35] S. Wangmanaopituk, H. Voos, W. Kongprawechnon, “Collaborative Nonlinear Model-Predictive Motion Planning and Control of Mobile Transport Robots for a Highly Flexible Production System,” Science Asia, pp. 333-341, 2010.
[36] F. Xie and R. Fierro, “First-State Contractive Model Predictive Control of Nonholonomic Mobile Robots,” IEEE American Control Conference, pp. 3494-3499, 2008.
[37] Y. Yoon, J. Shin, H. J. Kim, Y. Park, and S. Sastry, “Model-Predictive Active Steering and Obstacle Avoidance for Autonomous Ground Vehicles,” Control Engineering Practice ,Vol. 17, No. 7, pp. 741-750, 2009.
[38] 柯志亨,計算機網路實驗-以NS2模擬工具實作, 2007.