| 研究生: |
楊昕穎 Yang, Hsin- Ying |
|---|---|
| 論文名稱: |
粒狀土壤壓縮勁度模數研究 Oedometer stiffness modulus of granular soil |
| 指導教授: |
郭玉樹
Kuo, Yu-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 離岸風機基礎 、無凝聚性土壤 、單軸壓縮試驗 、土壤勁度參數 |
| 外文關鍵詞: | offshore wind turbine foundation, granular soil, oedometer test, soil stiffness parameter |
| 相關次數: | 點閱:100 下載:26 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我國離岸風電離岸風場之遴選結果已於107年4月底公布,為了確保開發時程如期商轉,許多離岸風電開發商均已規劃委託鑽探公司進行離岸風場海床土壤條件之調查,包括地球物理探測、水下文資測量及地工地質鑽探等。由於台灣西部海床土壤多屬河川沖積層延續,較歐洲國家離岸海床土壤條件軟弱,加上台灣地震及颱風頻繁,海床地層變異性高。必須更審慎評估海床土壤之勁度,以提供合理的地工設計參數供後續各項水下基礎結構設計及安裝考量。
本研究透過單軸壓縮試驗求取土壤勁度參數,包括Eoed、κ及λ,以標準砂釐清各影響因子對土壤勁度參數之影響,包括壓密時間長短、壓密速率、土壤相對密度及粒徑大小等。由於粒狀土壤之排水速度甚快,大部分之沉陷量於應力施加後之1小時內完成。透過相同條件試體,分別施加不同加載速率之應力,由實驗結果分析勁度參數,觀察得壓密時間長短及應力加載速率對土壤勁度參數之影響極小。由於相對密度直接影響土壤強度,本研究透過配置不同相對密度之粒狀土壤試體,並施以相同應力條件,分析得土壤勁度參數κ隨相對密度增加而提高,λ則隨之減少。亦透過改變粒徑大小,發現土壤勁度參數κ隨粒徑增加而增加,此成果與德國港灣技術手冊EAU(2012)建議之趨勢吻合。本研究亦以台灣西部海床現地砂進行試驗,由實驗分析結果得知,於相同之相對密度及粒徑分佈條件下,台灣西部海床土壤之κ值較標準砂之κ值小。
• The selection of offshore wind farm of Taiwan has published. To make sure the wind turbine work as expected, many developers have already commission geological boring company to investigate into seabed soil situation of wind farm. Due to seabed of western Taiwan was extension of river alluvium, it weaker than European seabed soil. Additionally, Taiwan hit by devastating earthquake and typhoon frequently, the stiffness of seabed soil should be paid more attention.
The study obtained the parameter of soil stiffness by oedometer test to clarified influence factor to soil stiffness, including duration of compression, compression rate, relative density and grain size. Due to instant drainage for granular soil, most settlement finished after 1 hour of stress application. Applying different rate of stress to same condition soil and realize that the influence of compression rate to soil stiffness is extremely small. Owing to initial relative density influence the soil strength directly, the study apply same stress situation to soil of different initial relative density then gain the trend of increasing stiffness parameter with increasing initial relative density. The trend satisfied with the suggested value of EAU (2012). The study also conducted on field sand to compare the stiffness parameter with Ottawa sand. According to result of experiment, under condition of similar grain size and initial relative density, the parameter κ of field soil would smaller than Ottawa sand.
ASTM D2435-96(2011).“Standard Test Method for One-Dimensional Consolidation Properties of Soils’’ American Society for Testing and Materials,USA.
ISO 17892-3(2014). “Incremental loading oedometer test’’ International Organization for Standardization, Europe.
BS 1377 Part5(1990). “Compressibility, permeability and durability tests’’ British Standard, British
Amsiejus, J., Kacianauskas, R., Norkus, A., & Tumonis, L. (2010). “Investigation of the sand porosity via oedometric testing.” Baltic Journal of Road and Bridge Engineering,Vol.5,No.3.,pp.139-147.
Atkinson, J. H. (2000). “Non-linear soil stiffness in routine design.”Géotechnique, Vol.5,No. 05, pp.487-508.
Artus, I. (2010). “Interessenhandeln jenseits der Norm: Ein deutsch-französischer Vergleich betrieblicher Interessenvertretung in peripheren und prekären Wirtschaftssegmenten.”Industrielle Beziehungen/The German Journal of Industrial Relations, pp.317-344.
Asad H. H.(2016). “Prediction of One-Dimensional Compression Test using Finite Elements Model” International Journal of Engineering Research & Technology, Vol.5,No. 05,pp.359-363.
Stuttgart.Leipzig(1996).“Mechanische Eigenschaften der Lockergesteine.” B.G.Teubner Germany.
BSH(2008) “Ground investigations for offshore wind farms’’Bundesamt für
Seeschifffahrt und Hydrographie, Germany
Briaud, J. L. (2001). “Introduction to soil moduli.”Geotechnical News,19(2), 54-58.
Bhuiyan, M. H., Holt, R. M., Larsen, I., & Stenebråten, J. F. (2013). “Static and dynamic behaviour of compacted sand and clay: Comparison between measurements in Triaxial and Oedometric test systems.”Geophysical Prospecting, Vol.61,No. 2, pp.329-340.
DIN18135(1999). “Eindimensionaler Kompressionsversuch’’Germany
Ulrich Smoltczyk(2001).“Grundbau-Taschenbuch.’’ Ernst&Sohn A Wiley
Company,Germany
Feng, T. W. (2011, January)“ An Experimental Study on Geotechnical Properties of Micaceous Sands.” In The Twenty-first International Offshore and Polar
Engineering Conference. International Society of Offshore and Polar Engineers.
Förster, W. (1996). “Mechanische Eigenschaften der Lockergesteine.”S.Leipzig
(Teubner).
Giese, S.,&Ziegler,M.(2010)“Bodenbewegungen infolge von Sümpfungsmaßnahmen für tiefe Tagebaue am Beispiel des Rheinischen Braunkohlenreviers(No. RWTH-CONV-124643).” Lehrstuhl für Geotechnik im Bauwesen und Institut für Grundbau, Bodenmechanik, Felsmechanik und Verkehrswasserbau.Germany
Hornig, E. D. (2011). “Eindimensionale Kompression überkonsolidierter bindiger Böden am Beispiel des Gipskeupers.”
Hayashi, H., Yamazoe, N., Mitachi, T., Tanaka, H., & Nishimoto, S.(2012). “Coefficient of earth pressure at rest for normally and overconsolidated peat ground in Hokkaido area.”Soils and Foundations, Vol.52,No. 2, pp.299-311.
Hayashi, H., Nishimoto, S., & Yamanashi, T. (2016). “Applicability of settlement prediction method to peaty ground.”Soils and Foundations, Vol.56,No. 1,pp. 144-151.
Holtz, R. D., Jamiolkowski, M. B., & Lancellotta, R. (1986). “Lessons from oedometer tests on high quality samples.”Journal of geotechnical engineering, Vol.112,No. 8, pp.768-776.
ISO/TS 17892-3: (2004). “Geotechnical investigation and testing laboratory testing of soil.” International Organization for Standardization, Geneva, Switzerland.
Johari, N. N., Bakar, I., & Aziz, M. H. A. (2014). “Consolidation parameters of reconstituted peat soil: oedometer testing.”
Kim, T. H., Nam, J. M., Ge, L., & Lee, K. I. (2008). “ Settlement characteristic of beach sands and its evaluation.”Marine Georesources and Geotechnology, Vol.26,No. 2, pp.67-85.
Lambe, T. W., & Whitman, R. V. (2008).Soil mechanics SI version. John Wiley & Sons.
EAU(2012) Guidelines on Urinary Incontinence. European Association of Urology.Germany
Polidori, E. (2015). “On the intrinsic compressibility of common clayey soils.”European Journal of Environmental and Civil Engineering,Vol.19,No.1,pp. 27-47.
Pestana, J. M., & Whittle, A. J. (1995). “Compression model for cohesionless soils.”Géotechnique, Vol 45,No. 4,pp. 611-631.
Rasmussen, K. K. (2012). “An investigation of monotonic and cyclic behaviour of Leda clay.
Randolph, M., Gourvenec, S., White, D., & Cassidy, M. (2011).Offshore geotechnical engineering. 2 New York: Spon Press.
Standard, B. (2004). 1377 (1990) “Methods of test for soils for civil engineering purposes.”British Standards Institution, London.
SUT.(2014) “Guidance notes for the planning and execution of geophysical and geotechnical ground investigation for offshore renewable energy developments. ”Society for Underwater Technology,UK.Seed, H. B., and Booker, J. R. (1976). “Stabilization of Potentially Liquefiable Sand Deposits Using Gravel Drains.” Earthquake Engineering Research Center, UCB/EERC-76/10, Berkeley, California.
Skuodis, Š., Karaman, A. H., & Dirgėlienė, N. (2017). “Comparison of one-step and step-wise compression tests.”Geologija. Geografija,3(1).
Sawicki, A., & Swidzinski, W. (1995). “Cyclic compaction of soils, grains and powders.”Powder Technology, Vol.85,No. 2, pp.97-104.
Sawicki, A. (1994). “Elasto-plastic interpretation of oedometric test.”Archives of hydro-engineering and environmental mechanics, Vol.41,No. 1-2,pp. 111-131.
Tepondjou Nguedia, R. L. (2016).“The impact of sample scale on the compressibility parameters of saturated fine-grained soils”Doctoral dissertation, University of Salford.
Vitale, P., & Skuodis, Š. (2013). “Analysis of shallow foundations settlements via different calculations methods.” In Proceedings of the 16th Conference for Junior Researchers Science–Future of Lithuania.
von Soos, P., & Bohac, J. (2002). “Properties of soils and rocks and their laboratory determination.”Geotechnical Engineering Handbook, Vol.01, pp.119-206.
Wils, L., Van Impe, P., & Haegeman, W. (2015). “One-dimensional compression of a crushable sand in dry and wet conditions.”In 3rd International Symposium on Geomechanics from Micro to Macro. 2,1403-1408Taylor and Francis Group-London.
Wichtmann, T., Kimmig, I., & Triantafyllidis, T. (2017). “On correlations between “dynamic”(small-strain) and “static”(large-strain) stiffness moduli–An experimental investigation on 19 sands and gravels.”Soil Dynamics and Earthquake Engineering, Vol.98, pp.72-83.
Wichtmann, T., & Triantafyllidis, T. (2009). “On the correlation of “static” and “dynamic” stiffness moduli of non‐cohesive soils.”Bautechnik, Vol.86,No. S1, pp.28-39.
郭玉樹(2017),「我國離岸風場海域地質土壤調查方法與設計應用建議研擬計畫」,經濟部能源科技研究發展計畫期末報告。
王勁凱(2012),「重力式基礎受垂直作用力下之變形分析」,碩士論文,成功大學土木工程學系,台南。
廖南華(2003),「土壤經驗參數於數值分析之應用」,博士論文,成功大學土木工程學系,台南。