簡易檢索 / 詳目顯示

研究生: 莊士緯
Chuang, Shih-Wei
論文名稱: 新穎低複雜度且彈性化心理聲學模型應用於有效率音訊等化系統
Novel low complexity and flexible psycho-acoustic model design for efficient audio equalization system
指導教授: 雷曉方
Lei, Sheau-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 110
中文關鍵詞: 心理聲學遮蔽效應聽力圖音訊等化器
外文關鍵詞: Psychoacoustic, Audiogram, Audio equalizer
相關次數: 點閱:123下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出新穎低複雜度且彈性化心理聲學模型與搭配開發出來的以聽力圖為基礎有效率等化系統。所設計等化系統具有以下幾個特色: 1)透過心理聲學模型,人耳存在的遮蔽效應可以讓系統每音框需做等化的點數大幅下降約70%,且考慮應用上的不同,本論文在心理聲學模型設計省略不必要的步驟,以降低計算複雜度,跟原始模型比較可降低約30%~40%的運算且不影響音質,除此以外,本論文提出之模型不需要去全頻的計算心理聲學模型,彈性化的設計在應用上更可以減輕心理聲學模型對於系統帶來的負擔。2)考慮聽力圖為基礎的等化演算法,透過考慮人耳(正常人)存在的聽力損失,將這些損失當作等化的依據,讓等化器的效果更好,3) 因為心理聲學遮蔽效應特性,在計算上捨棄了冗餘的訊號,進而降低每個音框的輸出功率。以整體等化器系統來說,本論文提出符合人耳特性的架構設計,比較數據上擁有最低的運算量且不會遜色的音質,此外,更有最低的輸出功率,跟其他架構相比,更適合實現於可攜帶裝置上。

    This paper presents a novel low complexity and flexible psychoacoustic model with proposed audiogram based efficient audio equalization system. Our proposed structure have the following characteristics: 1) With psychoacoustic model, we can reduce the processing points about 70% every frame according to the masking effect in our ears. Besides, based on different purpose, we keep only the necessary steps in psychoacoustic model which reducing 30%-40% operations without affecting the sound quality compared with original model in MPEG standard. Moreover, the flexible design with band-selectable strategy in our model lightening the burden on our system when we don’t need to calculate full-band model; 2) The equalization algorithm based on audiogram considering the hearing loss in normal people, we adjust the gain in frequency domain with the information given by audiogram making the equalization better and adaptive; 3) With the masking effect in psychoacoustic, the redundant signals were discarded, leading to the lower output power every frame. Compared with other audio equalizer with filter bank design, our proposed structure has the lowest computation complexity, lowest output power. Nevertheless, considering the property in human ear, our proposed is more suitable for normal using. Based on the above, the proposed structure would be a new solution for future application in audio processing.

    中文摘要 I EXTENDED ABSTRACT III 誌謝 IX 目錄 XI 表目錄 XIII 圖目錄 XV 第一章 緒論 1 1.1研究背景 1 1.2聽力圖 2 1.3動機與想法 4 1.4論文章節組織 5 第二章 相關文獻回顧與探討 7 2.1心理聲學 7 2.1.1耳蝸與臨界頻帶 7 2.1.2絕對可聽門檻 10 2.1.3遮蔽效應 11 2.1.4心理聲學模型 16 2.2等化器 24 2.2.1傳統濾波器組等化器架構 24 2.2.2 Cecchi et al. 多速率濾波器組等化器架構[13] 25 2.2.3 Cecchi et al. 無限脈衝濾波器等化器架構[14] 26 第三章 新穎低複雜度且彈性化心理聲學模型應用於有效率音訊等化系統 29 3.1. 整體架構與演算流程 29 3.2. 新穎低複雜度且彈性化心理聲學模型設計 31 3.2.1策略一.只保留所需要的計算 31 3.2.2策略二.針對被保留的步驟進行算式化簡 35 3.2.3策略三.可選擇頻帶的彈性化模型設計 38 3.2.4提出之心理聲學模型結論 40 3.3 音框訊號遮蔽 41 3.4 以聽力圖為基礎之音訊等化演算法 42 3.5 輸出功率計算 47 第四章 演算法數據分析與比較 49 4.1 心理聲學模型比較 49 4.1.1 計算複雜度比較 49 4.1.2 音質比較 57 4.2 等化器架構比較 61 4.2.1計算複雜度比較 61 4.2.2調整增益點數比較 65 4.2.3解析度比較 68 4.2.4輸出功率比較 69 4.2.5音質比較 70 4.2.6綜合性比較 73 第五章 演算法系統實現與驗證 75 5.1 系統實現 75 5.2 系統驗證 82 5.3 系統分析 86 第六章 結論與未來展望 87 參考文獻 89

    [1] http://www.hearinglink.org/what-is-an-audiogram
    [2] T. Painter, and A. Spanias, “Perceptual coding of digital audio,” Proceedings of the IEEE, vol. 88, no. 4, pp. 451-515, 2000.
    [3] B. C. J. Moore, “Masking in the human auditory system,” in Audio Engineering Society Conference: Collected Papers on Digital Audio Bit-Rate Reduction, pp. 9–19, 1996.
    [4] MPEG. Coding of moving pictures and associated audio for digital storage media at up to 1.5 Mbit/s, part 3: Audio, International Standard IS 11172-3, ISO/IEC JTC1/SC29 WG11, 1992.
    [5] E. Zwicker and H. Fastl, Psychoacoustics Facts and Models. Berlin, Germany: Springer-Verlag, 1990.
    [6] http://cochlearimplanthelp.com/journey/choosing-a-cochlear-implant/electrodes-and-channels/
    [7] H. Fletcher, “Auditory patterns,” Rev. Mod. Phys., vol. 12, no. 1, pp. 47–65, Jan. 1940.
    [8] W. Jesteadt, S. Bacon, and J. Lehman, “Forward masking as a function of frequency, masker level, and signal delay,” J. Acoust. Soc. Amer., vol. 71, pp. 950–962, 1982.
    [9] R. Hellman, “Asymmetry of masking between noise and tone,” Percep. Psychphys., vol. 11, pp. 241–246, 1972.
    [10] B. Scharf, “Critical bands.” in Foundations of Modern Auditory Theory, vol. 1, pp. 157-202, 1970.
    [11] J. L. Hall, “Asymmetry of masking revisited: Generalization of masker and probe bandwidth,” J. Acoust. Soc. Amer., vol. 101, pp. 1023–1033, Feb. 1997.
    [12] M. Schroeder, B. S. Atal, and J. L. Hall, “Optimizing digital speech coders by exploiting masking properties of the human ear,” J. Acoust. Soc. Amer., pp. 1647–1652, Dec. 1979.
    [13] S. Cecchi, L. Palestini, E. Moretti, and F. Piazza, “A New Approach to Digital Audio Equalization,” in Proc. Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA, pp. 62–65, October 2007.
    [14] Virgulti, Marco, Stefania Cecchi, and Francesco Piazza. "IIR filter approximation of an innovative digital audio equalizer." Image and Signal Processing and Analysis (ISPA), 2013 8th International Symposium on. IEEE, pp. 410-415, Sept. 2013.
    [15] http://www.petitcolas.net/fabien/software/mpeg/
    [16] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal processing. Prentice-hall Englewood Cliffs, 1989.
    [17] http://stingsti.blogspot.tw/2013/07/blog-post_24.html
    [18] http://audioate.blogspot.tw/2014/10/blog-post.html
    [19] S. Huang, T. Tsai, and L. Chen, “A low complexity design of psychoacoustic model for MPEG-2/4 advanced audio coding,” IEEE Tran.on Consumer Electronics, Vol. 50, No. 4, pp. 1209-1217, Nov. 2004.
    [20] Huang, Shih-Way, Liang-Gee Chen, and Tsung-Han Tsai. "Memory and computationally efficient psychoacoustic model for MPEG AAC on 16-bit fixed-point processors." IEEE International Symposium on Circuits and Systems, Vol. 4, pp. 3155-3158, May. 2005.
    [21] ITU-R Recommendation BS. 1387: “Method for objective measurements of perceived audio quality,” July 2001.
    [22] http://www.ebu.ch/fr/technical/publications/tech3000_series/tech3253/index.php?display=FR
    [23] ITU-R Recommendation BS. 1284, "Methods for the subjective assessment of sound quality - General requirements", 1997.
    [24] P. Duhamel, B. Piron, and J. Etcheto, “On computing the inverse DFT,” Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 36, no. 2, pp. 285-286, 1988.
    [25] http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=Taiwan&CategoryNo=173&No=542&PartNo=2

    下載圖示 校內:2020-09-11公開
    校外:2020-09-11公開
    QR CODE