簡易檢索 / 詳目顯示

研究生: 許景育
Hsu, Ching-Yu
論文名稱: XY軸機械平台之位置定位控制設計
Positioning Controller Design for XY Table
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 55
中文關鍵詞: 摩擦力強健控制模型預測控制
外文關鍵詞: friction, robust control, model predictive control
相關次數: 點閱:104下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來,位置定位系統在工業界上的應用非常廣闊,然而,一般的機械系統中,大多會有非線性特性存在機械伺服機構,而摩擦力就是影響定位精度的重要因素之一,因為它會造成系統追蹤誤差的產生,也會造成能量消耗等問題。在本論文中,主要的目的是發展控制法則,考慮以強健控制理論及模型預測控制針對位置定位系統的離散系統模型來做控制器設計,且針對位置定位系統的控制精度加以改良,並以模擬及實驗來實現對系統精度的改善,最後經由模擬及實驗結果得以驗證所設計之控制器確實能使具有摩擦力現象的系統穩定。

      High-precision positioning control is in many industrial applications. However, the nonlinear characteristic in a servomechanical system may pose performance limitations. For example, the friction affects the tracking error of the system, resulting in a large tracking error and, sometimes, oscillatory control signal. In this thesis, control algorithms are developed, simulated, and tested. Digital controllers based on robust control and model predictive methods have been designed to improve the control accuracy of positioning systems. Moreover, through simulation and experiment, these controllers are evaluated and tested in an X-Y table. It is show that the friction effect can be stabilized from the preliminary results of simulation and experiment.

    目錄 摘要………………………………………………………………………………………i ABSTRACT…………………………………………………………………………………ii 誌謝………………………………………………………………………………………iii 目錄……………………………………………………………………………………iv 圖目錄…………………………………………………………………………………vii 表目錄……………………………………………………………………………………ix 第壹章、 緒論………………………………………………………………………………….1 1.1 研究背景與動機……………………………………………………………………1 1.2 研究目的……………………………………………………………………………2 1.3 文獻回顧……………………………………………………………………………2 1.4 內容大綱……………………………………………………………………………4 第貳章、 系統的架構………………………………………………………………………….5 2.1 簡介…………………………………………………………………………………5 2.2 滾珠螺桿機械平台…………………………………………………………………5 2.2.1 精密滾珠螺桿………………………………………………………………5 2.2.2 精密機械平台………………………………………………………………6 2.3 定位系統……………………………………………………………………………8 2.3.1 交流馬達驅動器……………………………………………………………8 2.3.2 光學尺(線性編碼器)……………………………………………………9 2.3.3 介面卡………………………………………………………………………10 2.3.4 機械平台保護電路…………………………………………………………12 2.4 控制器發展平台……………………………………………………………………14 第參章、 系統分析與控制設計……………………………………………………………….15 3.1 系統鑑別……………………………………………………………………………15 3.1.1 摩擦力參數判別……………………………………………………………15 3.1.2 系統參數判別………………………………………………………………17 3.2 控制器設計…………………………………………………………………………20 3.2.1 干擾觀測器設計……………………………………………………………22 3.2.2 PD 控制器設計……………………………………………………………24 3.2.3 零相位誤差追蹤控制器設計………………………………………………25 3.2.4 摩擦力補償…………………………………………………………………26 3.3 預測控制理論………………………………………………………………………27 3.3.1 預測控制架構………………………………………………………………28 3.3.2 評量函數……………………………………………………………………30 3.3.3 預測控制之應用……………………………………………………………30 第肆章、 模擬與實驗………………………………………………………………………….33 4.1 前饋控制器架構之模擬與實驗結果………………………………………………33 4.1.1 前饋控制器架構之模擬結果………………………………………………34 4.1.2 前饋控制器架構之實驗結果………………………………………………38 4.2 預測控制理論之模擬與實驗結果…………………………………………………42 4.2.1預測控制架構之模擬結果………………………………………………….42 4.2.2 預測控制架構之實驗結果…………………………………………………46 4.3 討論…………………………………………………………………………………49 第伍章、 結論與未來工作…………………………………………………………………….51 5.1 結論…………………………………………………………………………………51 5.2 未來工作……………………………………………………………………………52 參考文獻…………………………………………………………………………………………….53

    參考文獻

    [1] 黃百毅, 陳永耀, 智慧型精密定位控制系統設計, 台灣大學電機學院研究所博士班論文, 2000.

    [2] S. S. Ge, T. H. Lee, and S. X. Ren, “Adaptive friction compensation of servo mechanisms,” International Journal of Systems Science, Vol. 32, No. 4, 2001, pp. 523-532.

    [3] R. Kelly, J. Llamas, and R. Campa, “A measurement procedure for viscous and coulomb friction,” IEEE Transactions on Instrumentation and Measurement, Vol. 49, No. 4, 2000, pp. 857-861.

    [4] C. G. Baril, and, P. O. Gutman, “Performance enhancing adaptive friction compensation for uncertain systems,” IEEE Transactions on Control Systems Technology, Vol. 5, No. 5, 1997, pp. 466 - 479.

    [5] P. Vedagarbha, D. M. Dawson, and M. Feemster, “Tracking control of mechanical systems in the presence of nonlinear dynamic friction effects,” IEEE Transactions on Control Systems Technology, Vol. 7,No. 4, 1999, pp. 446 - 456.

    [6] Y. Zhang, G. Liu, A. A. Goldenberg, “Friction compensation with estimated velocity,” Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Vol. 3, 2002, pp. 2650-2655.

    [7] B. K. Choi, C. H. Choi, and H. Lim, “Model-based disturbance attenuation for CNC machining centers in cutting process,” IEEE/ASME Transactions on Mechatronics, Vol. 4, No. 2, 1999, pp. 157 - 168.

    [8] T. Umeno, and Y. Hori, “Robust speed control of DC servomotors using modern two degrees-of-freedom controller design,” IEEE Transactions on Industrial Electronics, Vol. 38, No. 5, 1991, pp. 363 - 368.

    [9] S. Endo, H. Kobayashi, C. J. Kempf, S. Kobayashi, M. Tomizuka, and Y. Hori, “Robust digital tracking controller design for high-speed positioning systems,” Control Engineering Practice, Vol. 4, No. 4, 1996, pp. 527-536.

    [10] H. S. Lee, M. Tomizuka, “Robust motion controller design for high-accuracy positioning systems,” IEEE Transactions on Industrial Electronics, Vol. 43, No. 1, 1996, pp. 48 - 55.

    [11] Z. Wang, H. Melkote, and F. Khorrami, “Robust adaptive friction compensation in servo-drives using position measurement only,” Proceedings of the 2000 IEEE International Conference on Control Applications, 2000, pp. 178 - 183.

    [12] L. Xu, and B. Yao, “Adaptive robust control of mechanical systems with nonlinear dynamic friction compensation,” Proceedings of the American Control Conference, Vol. 4, 2000, pp. 2595 - 2599.

    [13] B. Yao, M. Al-Majed, and M. Tomizuka, “High-performance robust motion control of machine tools: an adaptive robust control approach and comparative experiments,” IEEE/ASME Transactions on Mechatronics, Vol. 2, No. 2, 1997, pp. 63 - 76.

    [14] G. Song, Y. Wang, L. Cai, and R. W. Longman, “A sliding-mode based smooth adaptive robust controller for friction compensation,” Proceedings of the American Control Conference, Vol. 5, 1995, pp. 3531 - 3535.

    [15] C. T. Cao, “Fuzzy compensator for stick-slip friction,” Mechanics, Vol. 3, No. 6, 1993, pp. 783-794.

    [16] M. K. Ciliz, and M. Tomizuka, “Modeling and compensation of frictional uncertainties in motion control : a neural network based approach,” Proceedings of the American Control Conference, Vol. 5, 1995, pp. 3269-3273.

    [17] T. Umeno, and Y. Hori, “Two degree of freedom controllers for robust servomechanism – their application to robot manipulators without speed sensors,” Proceedings of the 1990 International Workshop on Advanced Motion Control, 1990, pp. 179-188.

    [18] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback control theory, 1992.

    [19] M. Tomizuka, “Zero phase error tracking algorithm for digital control,” ASME Journal of Dynamic systems, Measurement, and Control, Vol. 109, No. 1, 1987, pp. 65-68.

    [20] M. F. Benkhoris, and M. Ait-Ahmed, “Discrete speed estimation from a position encoder for motor drives,” 1996 Sixth International Conference on Power Electronics and Variable Speed Drives, 1996, pp. 283-287.

    [21] R. Soeterboek, Predictive control : a unified approach, 1992.

    [22] K. J. Åström, and B. Wittenmark, Adaptive control, 1989.

    下載圖示 校內:2007-08-09公開
    校外:2007-08-09公開
    QR CODE