| 研究生: |
許景育 Hsu, Ching-Yu |
|---|---|
| 論文名稱: |
XY軸機械平台之位置定位控制設計 Positioning Controller Design for XY Table |
| 指導教授: |
莊智清
Juang, Jyh-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 摩擦力 、強健控制 、模型預測控制 |
| 外文關鍵詞: | friction, robust control, model predictive control |
| 相關次數: | 點閱:104 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,位置定位系統在工業界上的應用非常廣闊,然而,一般的機械系統中,大多會有非線性特性存在機械伺服機構,而摩擦力就是影響定位精度的重要因素之一,因為它會造成系統追蹤誤差的產生,也會造成能量消耗等問題。在本論文中,主要的目的是發展控制法則,考慮以強健控制理論及模型預測控制針對位置定位系統的離散系統模型來做控制器設計,且針對位置定位系統的控制精度加以改良,並以模擬及實驗來實現對系統精度的改善,最後經由模擬及實驗結果得以驗證所設計之控制器確實能使具有摩擦力現象的系統穩定。
High-precision positioning control is in many industrial applications. However, the nonlinear characteristic in a servomechanical system may pose performance limitations. For example, the friction affects the tracking error of the system, resulting in a large tracking error and, sometimes, oscillatory control signal. In this thesis, control algorithms are developed, simulated, and tested. Digital controllers based on robust control and model predictive methods have been designed to improve the control accuracy of positioning systems. Moreover, through simulation and experiment, these controllers are evaluated and tested in an X-Y table. It is show that the friction effect can be stabilized from the preliminary results of simulation and experiment.
參考文獻
[1] 黃百毅, 陳永耀, 智慧型精密定位控制系統設計, 台灣大學電機學院研究所博士班論文, 2000.
[2] S. S. Ge, T. H. Lee, and S. X. Ren, “Adaptive friction compensation of servo mechanisms,” International Journal of Systems Science, Vol. 32, No. 4, 2001, pp. 523-532.
[3] R. Kelly, J. Llamas, and R. Campa, “A measurement procedure for viscous and coulomb friction,” IEEE Transactions on Instrumentation and Measurement, Vol. 49, No. 4, 2000, pp. 857-861.
[4] C. G. Baril, and, P. O. Gutman, “Performance enhancing adaptive friction compensation for uncertain systems,” IEEE Transactions on Control Systems Technology, Vol. 5, No. 5, 1997, pp. 466 - 479.
[5] P. Vedagarbha, D. M. Dawson, and M. Feemster, “Tracking control of mechanical systems in the presence of nonlinear dynamic friction effects,” IEEE Transactions on Control Systems Technology, Vol. 7,No. 4, 1999, pp. 446 - 456.
[6] Y. Zhang, G. Liu, A. A. Goldenberg, “Friction compensation with estimated velocity,” Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Vol. 3, 2002, pp. 2650-2655.
[7] B. K. Choi, C. H. Choi, and H. Lim, “Model-based disturbance attenuation for CNC machining centers in cutting process,” IEEE/ASME Transactions on Mechatronics, Vol. 4, No. 2, 1999, pp. 157 - 168.
[8] T. Umeno, and Y. Hori, “Robust speed control of DC servomotors using modern two degrees-of-freedom controller design,” IEEE Transactions on Industrial Electronics, Vol. 38, No. 5, 1991, pp. 363 - 368.
[9] S. Endo, H. Kobayashi, C. J. Kempf, S. Kobayashi, M. Tomizuka, and Y. Hori, “Robust digital tracking controller design for high-speed positioning systems,” Control Engineering Practice, Vol. 4, No. 4, 1996, pp. 527-536.
[10] H. S. Lee, M. Tomizuka, “Robust motion controller design for high-accuracy positioning systems,” IEEE Transactions on Industrial Electronics, Vol. 43, No. 1, 1996, pp. 48 - 55.
[11] Z. Wang, H. Melkote, and F. Khorrami, “Robust adaptive friction compensation in servo-drives using position measurement only,” Proceedings of the 2000 IEEE International Conference on Control Applications, 2000, pp. 178 - 183.
[12] L. Xu, and B. Yao, “Adaptive robust control of mechanical systems with nonlinear dynamic friction compensation,” Proceedings of the American Control Conference, Vol. 4, 2000, pp. 2595 - 2599.
[13] B. Yao, M. Al-Majed, and M. Tomizuka, “High-performance robust motion control of machine tools: an adaptive robust control approach and comparative experiments,” IEEE/ASME Transactions on Mechatronics, Vol. 2, No. 2, 1997, pp. 63 - 76.
[14] G. Song, Y. Wang, L. Cai, and R. W. Longman, “A sliding-mode based smooth adaptive robust controller for friction compensation,” Proceedings of the American Control Conference, Vol. 5, 1995, pp. 3531 - 3535.
[15] C. T. Cao, “Fuzzy compensator for stick-slip friction,” Mechanics, Vol. 3, No. 6, 1993, pp. 783-794.
[16] M. K. Ciliz, and M. Tomizuka, “Modeling and compensation of frictional uncertainties in motion control : a neural network based approach,” Proceedings of the American Control Conference, Vol. 5, 1995, pp. 3269-3273.
[17] T. Umeno, and Y. Hori, “Two degree of freedom controllers for robust servomechanism – their application to robot manipulators without speed sensors,” Proceedings of the 1990 International Workshop on Advanced Motion Control, 1990, pp. 179-188.
[18] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback control theory, 1992.
[19] M. Tomizuka, “Zero phase error tracking algorithm for digital control,” ASME Journal of Dynamic systems, Measurement, and Control, Vol. 109, No. 1, 1987, pp. 65-68.
[20] M. F. Benkhoris, and M. Ait-Ahmed, “Discrete speed estimation from a position encoder for motor drives,” 1996 Sixth International Conference on Power Electronics and Variable Speed Drives, 1996, pp. 283-287.
[21] R. Soeterboek, Predictive control : a unified approach, 1992.
[22] K. J. Åström, and B. Wittenmark, Adaptive control, 1989.