簡易檢索 / 詳目顯示

研究生: 邵勇先
Shao, Yung-Hsien
論文名稱: 以階層寡核甘酸引子延伸(HOPE)技術揭露自營除氮系統中關鍵菌群動態
HOPE Reveals Dynamics of Key Populations in an Autotrophic Nitrogen Removal System
指導教授: 吳哲宏
Wu, Jer-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 110
中文關鍵詞: 階層寡核苷酸引子延伸技術自營除氮族群動態
外文關鍵詞: HOPE, Nitrogen Removal, Population Dynamic
相關次數: 點閱:102下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有低成本與低能耗優勢的自營除氮程序被認為是符合永續發展的廢水除氮技術之一。自營除氮程序需要數種微生物彼此合作執行除氮的生態功能,氨氧化菌、厭氧氨氧化菌以及亞硝氧化菌三類自營除氮菌群豐富度決定反應系統除氮功能的表現,因此維持這三類自營除氮菌群在穩定且適當比例是長期操作自營除氮系統很重要的關鍵。本研究建立一套針對自營除氮菌群的階層寡核苷酸引子延伸法(ANR-HOPE),共能偵測20個不同分類階層的自營除氮菌群;並以ANR-HOPE探討長期操作在低溶氧狀態下(DO < 0.3 mg/L),自營除氮生物反應槽中關鍵菌群動態變化。ANR-HOPE分析結果顯示優勢的氨氧化菌為Nitrosomonas CB子群。優勢的亞硝氧化菌為Nitrospira屬,有三類Nitrospira子群動態變化著。在氨氮負荷提升過程,優勢的厭氧氨氧化菌由Ca. Jettenia轉變為Ca. Brocadia。以Redundancy analysis探討各菌群變動與環境因子的關聯,發現溶氧與氮負荷是最重要的環境因子,氨氧化菌與厭氧氨氧化菌的生長互為正相關,但是與亞硝氧化菌呈現負相關。進一步探討不同菌種組成與水質的關係發現,當Nitrospria子群I為優勢時比硝酸生產速率(14.3 μg NO3--N/Nitrospira 16S copies/day)高於Nitrospira 子群II優勢時(2.4 μg NO3--N/Nitrospira 16S copies/day)。此結果顯示當Nitrospria以II為主時,能夠以產生較少亞硝酸的方式生長。本研究成果展示ANR-HOPE可以有效的監測自營除氮反應槽關鍵菌群在不同分類階層的動態變化,顯示ANR-HOPE是一項可以應用於研究自營除氮菌群生態的分析技術。另一方面,耗時短、分析通量高的ANR-HOPE法也很適合於監測生物反應槽系統中關鍵菌群,增進自營除氮系統的管理效率。

    This study developed an ANR-HOPE assay to rapidly determine the relative abundance of 20 bacterial groups involved in ammonia oxidation (AOB), nitrite oxidation (NOB) and anaerobic ammonia oxidation (AnAOB). After optimization in silico and experimentally, the ANR-HOPE was applied to an autotrophic nitrogen removal reactor operated under long-term low oxygen conditions, and detected the bacterial targets accounting for approximately 70% of total bacterial population in the system. The resulting data showed the distinct population dynamics of AOB, NOB and AnAOB at the respective patterns. Ca. Jettenia sp. and Ca. Brocadia sp. were detected and exhibited the dominance at the stage 1 and the stage 3, respectively. This change of AnAOB species was likely the consequence attributed by the input ammonia loading variation and the differences of species eco-physiology such as the substrate affinity, and the growth conditions with DO and pH. The Nitrosomonas CB, an AOB specific to the reactor in this study was the most abundant AOB throughout the study. In accordance with the redundancy analysis, the Nitrosomonas CB dominated the community in the positive association with the increasing input nitrogen loading rate. Three Nitrospira groups (I, II and CB) coexisted at a detectable to medium abundance, and exhibited a dynamic fluctuation, which results in a great change of specific nitrate production rates. As demonstrated, the ANR-HOPE approach is a specific, rapid and multiplexing platform to determine the relative abundances of AOB, NOB and AnAOB populations. ANR-HOPE can be an appropriate method to routinely monitor autotrophic nitrogen removal bacteria populations and improve management of process operations.

    摘要 I Abstract II 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XV 第一章 前言 1 第二章 文獻回顧 4 2.1 微生物調控的氮循環 4 2.1.1 氮轉變反應 (Nitrogen transfer reactions) 6 2.1.2 本節結語 9 2.2 自營除氮系統中的除氮微生物 10 2.2.1 厭氧氨氧化菌(Anaerobic ammonia-oxidizing bacteria, AnAOB) 12 2.2.2 氨氧化菌 (Ammonium-oxidizing bacteria, AOB) 15 2.2.3 亞硝氧化菌 (Nitrite-oxidizing bacteria, NOB) 17 2.2.4 自營除氮系統中微生物的交互作用 21 2.2.5 本節結語 25 2.3 複製細菌16S rRNA 基因序列的universal primers 25 2.4 階層寡核苷酸引子延伸(HOPE) 27 第三章 材料與方法 29 3.1 實驗室規模自營除氮生物反應槽 (Lab-scale autotrophic nitrogen removal bioreactor) 29 3.1.1 反應槽操作條件 29 3.2 反應槽水質分析 31 3.2.1 儀器分析 32 3.3 微生物分析 32 3.3.1 微生物採樣與DNA萃取 32 3.3.2 16S rRNA基因放大 - 聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 33 3.3.3 PCR產物純化 34 3.3.4 16S rRNA基因分子選殖 34 3.3.5 親緣分析 35 3.3.6 基因定量分析-即時定量聚合酶連鎖反應(Real-Time Quantitative PCR, qPCR) 35 3.3.7 次世代定序 36 3.4. 階層寡核苷酸引子延伸技術 (HOPE) 36 3.4.1 ANR-HOPE primers設計與修改 38 3.4.2 ANR-HOPE primers目標菌群覆蓋率與專一性評估 38 3.4.3 ANR-HOPE層析分離最佳化 39 3.5 27F primer修改 39 3.5.1 27F_AMX評估 40 第四章 結果 41 4.1 實驗室規模自營除氮反應槽操作 41 4.1.1 反應槽環境因子監測結果 41 4.1.2 反應槽含氮化合濃度分析結果 43 4.2 27F primer修改 44 4.2.1 反應槽內自營除氮菌群親緣關係 47 4.3 ANR-HOPE法建立與最佳化 53 4.3.1 ANR-HOPE法Primers覆蓋率與專一性評估 60 4.3.2 ANR-HOPE法敏感度評估 62 4.3.3 ANR-HOPE法層析分離最佳化 62 4.4 ANR-HOPE應用 64 4.4.1 以ANR-HOPE分析CB反應槽 64 4.4.2 比較ANR-HOPE和高通量定序分析結果 68 4.5 自營除氮反應槽中關鍵菌群動態 70 4.5.1 以RDA分析環境因子與自營除氮菌群動態變化相關性 70 4.5.2 自營除氮菌群動態變化與反應槽除氮功能的關聯 73 第五章 討論 75 5.1 ANR-HOPE法建立 75 5.2 Primer 27F 修改 76 5.3 長期低溶氧下自營除氮系統中關鍵菌群動態變化 77 第六章 結論與建議 85 參考文獻 87 附錄 103

    1. Abma, W.R., Schultz, C.E., Mulder, J.W., van derStar, W.R.L., Strous, M., Tokutomi, T., vanLoosdrecht, M.C.M., 2007. Full-scale granular sludge Anammox process. Water Sci. Technol. 55, 27–33.
    2. Agrawal, S., Seuntjens, D., Cocker, P.De, Lackner, S., Vlaeminck, S.E., 2018. Success of mainstream partial nitritation/anammox demands integration of engineering, microbiome and modeling insights. Curr. Opin. Biotechnol. 50, 214–221.
    3. Alawi, M., Off, S., Kaya, M., Spieck, E., 2009. Temperature influences the population structure of nitrite-oxidizing bacteria in activated sludge. Environ. Microbiol. Rep.
    4. Ali, M., Oshiki, M., Awata, T., Isobe, K., Kimura, Z., Yoshikawa, H., Hira, D., Kindaichi, T., Satoh, H., Fujii, T., Okabe, S., 2015. Physiological characterization of anaerobic ammonium oxidizing bacterium ‘ C andidatus Jettenia caeni.’ Environ. Microbiol.
    5. Amann, R.I., Binder, B.J., Olson, R.J., Devereux, R., Stahl, D.A., 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations . Combination of 16S rRNA-Targeted Oligonucleotide Probes with Flow Cytometry for Analyzing Mixed Microbial Populations 56, 1919–1925.
    6. Arp, D.J., Bottomley, P.J., 2006. Nitrifiers: More than 100 years from isolation to genome sequences . Microbe 1, 229–234.
    7. Avrahami, S., Conrad, R., 2003. Patterns of Community Change among Ammonia Oxidizers in Meadow Soils upon Long-Term Incubation at Different Temperatures Patterns of Community Change among Ammonia Oxidizers in Meadow Soils upon Long-Term Incubation at Different Temperatures. Appl. Environ. Microbiol. 69, 6152–6154.
    8. Awata, T., Oshiki, M., Kindaichi, T., Ozaki, N., Ohashi, A., Okabe, S., 2013. Physiological characterization of an anaerobic ammonium-oxidizing bacterium belonging to the “Candidatus scalindua” group. Appl. Environ. Microbiol. 79, 4145–4148.
    9. Bae, H., Chung, Y.C., Jung, J.Y., 2010. Microbial community structure and occurrence of diverse autotrophic ammonium oxidizing microorganisms in the anammox process. Water Sci. Technol. 61, 2723–2732.
    10. Bae, H., Park, K.S., Chung, Y.C., Jung, J.Y., 2010. Distribution of anammox bacteria in domestic WWTPs and their enrichments evaluated by real-time quantitative PCR. Process Biochem. 45, 323–334.
    11. Baker, G.C., Smith, J.J., Cowan, D.A., 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55, 541–555.
    12. Bartelme, R.P., McLellan, S.L., Newton, R.J., 2017. Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and comammox Nitrospira. Front. Microbiol. 8.
    13. Bartossek, R., Nicol, G.W., Lanzen, A., Klenk, H.P., Schleper, C., 2010. Homologues of nitrite reductases in ammonia-oxidizing archaea: Diversity and genomic context. Environ. Microbiol. 12, 1075–1088.
    14. Bates, S.T., Berg-Lyons, D., Caporaso, J.G., Walters, W.A., Knight, R., Fierer, N., 2011. Examining the global distribution of dominant archaeal populations in soil. ISME J. 5, 908–917.
    15. Bellucci, M., Ofiţeru, I.D., Graham, D.W., Head, I.M., Curtis, T.P., 2011. Low-dissolved-oxygen nitrifying systems exploit ammonia-oxidizing bacteria with unusually high yields. Appl. Environ. Microbiol. 77, 7787–7796.
    16. Beman, J.M., Leilei Shih, J., Popp, B.N., 2013. Nitrite oxidation in the upper water column and oxygen minimum zone of the eastern tropical North Pacific Ocean. ISME J. 7, 2192–2205.
    17. Bothe, H., Schmitz, O., Yates, M.G., Newton, W.E., 2010. Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria. Microbiol. Mol. Biol. Rev. 74, 529–551.
    18. Bristow, L.A., Callbeck, C.M., Larsen, M., Altabet, M.A., Dekaezemacker, J., Forth, M., Gauns, M., Glud, R.N., Kuypers, M.M.M., Lavik, G., Milucka, J., Naqvi, S.W.A., Pratihary, A., Revsbech, N.P., Thamdrup, B., Treusch, A.H., Canfield, D.E., 2017. N2production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone. Nat. Geosci. 10, 24–29.
    19. Brochier-Armanet, C., Boussau, B., Gribaldo, S., Forterre, P., 2008. Mesophilic crenarchaeota: Proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6, 245–252.
    20. Burris, Robert H. and Roberts, G.P., 1993. Biological Nitrogen Fixation. Annu. Rev. Nutr. 13, 317–335.
    21. Burton, S.A.Q., Prosser, J.I., 2001. Autotrophic Ammonia Oxidation at Low pH through Urea Hydrolysis Autotrophic Ammonia Oxidation at Low pH through Urea Hydrolysis. Appl. Environ. Microbiol. 67, 2952–2957.
    22. Byrne, N., Strous, M., Crépeau, V., Kartal, B., Birrien, J.L., Schmid, M., Lesongeur, F., Schouten, S., Jaeschke, A., Jetten, M., Prieur, D., Godfroy, A., 2009. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents. ISME J. 3, 117–123.
    23. Cabello, P., Roldán, M.D., Moreno-Vivián, C., 2004. Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150, 3527–3546.
    24. Cai, L., Ye, L., Tong, A.H.Y., Lok, S., Zhang, T., 2013. Biased Diversity Metrics Revealed by Bacterial 16S Pyrotags Derived from Different Primer Sets. PLoS One 8, 1–11.
    25. Campbell, B.J., Engel, A.S., Porter, M.L., Takai, K., 2006. The versatile ε-proteobacteria: Key players in sulphidic habitats. Nat. Rev. Microbiol. 4, 458–468.
    26. Canfield, D.E., Glazer, A.N., Falkowski, P.G., 2010. The Evolution and Future of Earth ’ s Nitrogen Cycle. Science (80-. ). 330, 192–196.
    27. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G. a, Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C. a, Mcdonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W. a, Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. correspondence QIIME allows analysis of high- throughput community sequencing data Intensity normalization improves color calling in SOLiD sequencing. Nat. Publ. Gr. 7, 335–336.
    28. Caranto, J.D., Lancaster, K.M., 2017. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proc. Natl. Acad. Sci. 201704504.
    29. Chen, W.Y., Wu, J.H., Lin, Y.Y., Huang, H.J., Chang, J.E., 2013. Bioremediation potential of soil contaminated with highly substituted polychlorinated dibenzo-p-dioxins and dibenzofurans: Microcosm study and microbial community analysis. J. Hazard. Mater. 261, 351–361.
    30. Claesson, M.J., Wang, Q., O’Sullivan, O., Greene-Diniz, R., Cole, J.R., Ross, R.P., O’Toole, P.W., 2010. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 38.
    31. Codispoti, L.A., Christensen, J.P., 1985. Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific ocean. Mar. Chem. 16, 277–300.
    32. Cydzik-kwiatkowska, A., 2010. Bioremediation 599.
    33. Daims, H., Brühl, A., Amann, R., Schleifer, K.H., Wagner, M., 1999. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444.
    34. Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R.H., VonBergen, M., Rattei, T., Bendinger, B., Nielsen, P.H., Wagner, M., 2015. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509.
    35. Daims, H., Lücker, S., Wagner, M., 2016. A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria. Trends Microbiol. 24, 699–712.
    36. Daims, H., Nielsen, J.L., Nielsen, P.H.E.R.H., Wagner, M., Schleifer, K., Nielsen, P.H.E.R.H., Schleifer, K., 2001. In Situ Characterization of Nitrospira -Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants. Appl. Environ. Microbiol. 67, 5273–5284.
    37. Dale, O.R., Tobias, C.R., Song, B., 2009. Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environ. Microbiol. 11, 1194–1207.
    38. Dang, H., Li, J., Chen, R., Wang, L., Guo, L., Zhang, Z., Klotz, M.G., 2010. Diversity, abundance, and spatial distribution of sedimet ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl. Environ. Microbiol. 76, 4691–4702.
    39. DeLa Torre, J.R., Walker, C.B., Ingalls, A.E., Könneke, M., Stahl, D.A., 2008. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ. Microbiol. 10, 810–818.
    40. Dietl, A., Ferousi, C., Maalcke, W.J., Menzel, A., DeVries, S., Keltjens, J.T., Jetten, M.S.M., Kartal, B., Barends, T.R.M., 2015. The inner workings of the hydrazine synthase multiprotein complex. Nature 527, 394–397.
    41. Dolinšek, J., Lagkouvardos, I., Wanek, W., Wagner, M., Daims, H., 2013. Interactions of nitrifying bacteria and heterotrophs: Identification of a Micavibrio-like putative predator of Nitrospira spp. Appl. Environ. Microbiol. 79, 2027–2037.
    42. Dytczak, M.A., Londry, K.L., Oleszkiewicz, J.A., 2008. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates. Water Res. 42, 2320–2328.
    43. Eady, R.R., 1996. Structure−Function Relationships of Alternative Nitrogenases. Chem. Rev. 96, 3013–3030.
    44. Edwards, T.A., Calica, N.A., Huang, D.A., Manoharan, N., Hou, W., Huang, L., Panosyan, H., Dong, H., Hedlund, B.P., 2013. Cultivation and characterization of thermophilic nitrospira species from geothermal springs in the US Great Basin, China, and Armenia. FEMS Microbiol. Ecol. 85, 283–292.
    45. Egli, K., Fanger, U., Alvarez, P.J.J., Siegrist, H., Van derMeer, J.R., Zehnder, A.J.B., 2001. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch. Microbiol. 175, 198–207.
    46. Erguder, T.H., Boon, N., Wittebolle, L., Marzorati, M., Verstraete, W., 2009. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol. Rev. 33, 855–869.
    47. Ettwig, K.F., Butler, M.K., LePaslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M.M., Schreiber, F., Dutilh, B.E., Zedelius, J., DeBeer, D., Gloerich, J., Wessels, H.J.C.T., VanAlen, T., Luesken, F., Wu, M.L., Van DePas-Schoonen, K.T., Op Den Camp, H.J.M., Janssen-Megens, E.M., Francoijs, K.J., Stunnenberg, H., Weissenbach, J., Jetten, M.S.M., Strous, M., 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548.
    48. Farris, M.H., Olson, J.B., 2007. Detection of Actinobacteria cultivated from environmental samples reveals bias in universal primers. Lett. Appl. Microbiol. 45, 376–381.
    49. Fitzgerald, C.M., Camejo, P., Oshlag, J.Z., Noguera, D.R., 2015. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen. Water Res. 70, 38–51.
    50. Flemming, H.C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A., Kjelleberg, S., 2016. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575.
    51. Fowler, S.J., Palomo, A., Dechesne, A., Mines, P.D., Smets, B.F., 2018. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ. Microbiol. 20, 1002–1015.
    52. Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E., Oakley, B.B., 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. 102, 14683–14688.
    53. Frank, J.A., Reich, C.I., Sharma, S., Weisbaum, J.S., Wilson, B.A., Olsen, G.J., Al, F.E.T., Icrobiol, A.P.P.L.E.N.M., 2008. Critical Evaluation of Two Primers Commonly Used for Amplification of Bacterial 16S rRNA Genes ᰔ 74, 2461–2470.
    54. Freitag, A., Rudert, M., Bock, E., 1987. Growth of Nitrobacter by dissimilatoric nitrate reduction. FEMS Microbiol. Lett. 48, 105–109.
    55. Fuerst, J.A., Sagulenko, E., 2011. Beyond the bacterium: Planctomycetes challenge our concepts of microbial structure and function. Nat. Rev. Microbiol. 9, 403–413.
    56. Füssel, J., Lam, P., Lavik, G., Jensen, M.M., Holtappels, M., Günter, M., Kuypers, M.M.M., 2012. Nitrite oxidation in the Namibian oxygen minimum zone. ISME J. 6, 1200–1209.
    57. Füssel, J., Lücker, S., Yilmaz, P., Nowka, B., vanKessel, M.A.H.J., Bourceau, P., Hach, P.F., Littmann, S., Berg, J., Spieck, E., Daims, H., Kuypers, M.M.M., Lam, P., 2017. Adaptability as the key to success for the ubiquitous marine nitrite oxidizer Nitrococcus. Sci. Adv. 3, 2–11.
    58. Gilbride, K.A., Lee, D.Y., Beaudette, L.A., 2006. Molecular techniques in wastewater: Understanding microbial communities, detecting pathogens, and real-time process control. J. Microbiol. Methods 66, 1–20.
    59. Gonzalez-Gil, G., Sougrat, R., Behzad, A.R., Lens, P.N.L., Saikaly, P.E., 2015. Microbial Community Composition and Ultrastructure of Granules from a Full-Scale Anammox Reactor. Microb. Ecol. 70, 118–131.
    60. Gonzalez-Martinez, A., Rodriguez-Sanchez, A., vanLoosdrecht, M.C.M., Gonzalez-Lopez, J., Vahala, R., 2016. Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing. Environ. Sci. Pollut. Res. 23, 25501–25511.
    61. Gori, F., Tringe, S.G., Kartal, B., Marchiori, E., Jetten, M.S.M., 2011. The metagenomic basis of anammox metabolism in Candidatus “Brocadia fulgida”. Biochem. Soc. Trans. 39, 1799–1804.
    62. Graaf, A.A.Van De, Bruijn, P.De, Robertson, L.A., Jetten, M.M., Kuenen, J.G., 1996. Autotrophic growth of anaerobic ammoium-oxidizing micro-organ isms in a fluidized bed reactor.
    63. Graf, D.R.H., Jones, C.M., Hallin, S., 2014. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One 9, 1–20.
    64. Griffin, B.M., Schott, J., Schink, B., 2007. Nitrite, an electron donor for anoxygenic photosynthesis. Science (80-. ). 316, 1870.
    65. Gruber-Dorninger, C., Pester, M., Kitzinger, K., Savio, D.F., Loy, A., Rattei, T., Wagner, M., Daims, H., 2015. Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME J. 9, 643–655.
    66. Gubry-Rangin, C., Nicol, G.W., Prosser, J.I., 2010. Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol. Ecol. 74, 566–574.
    67. Guo, F., Ju, F., Cai, L., Zhang, T., 2013. Taxonomic Precision of Different Hypervariable Regions of 16S rRNA Gene and Annotation Methods for Functional Bacterial Groups in Biological Wastewater Treatment. PLoS One 8.
    68. Han, P., Klümper, U., Wong, A., Li, M., Lin, J.G., Quan, Z., Denecke, M., Gu, J.D., 2017. Assessment of molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in different environmental samples using PCR primers based on 16S rRNA and functional genes. Appl. Microbiol. Biotechnol. 101, 7689–7702.
    69. Hendrickx, T.L.G., Kampman, C., Zeeman, G., Temmink, H., Hu, Z., Kartal, B., Buisman, C.J.N., 2014. High specific activity for anammox bacteria enriched from activated sludge at 10°C. Bioresour. Technol. 163, 214–222.
    70. Hill, J.E., Town, J.R., Hemmingsen, S.M., 2006. Improved template representation in cpn 60 polymerase chain reaction (PCR) product libraries generated from complex templates by application of a specific mixture of PCR primers. Environ. Microbiol. 8, 741–746.
    71. Hira, D., Toh, H., Migita, C.T., Okubo, H., Nishiyama, T., Hattori, M., Furukawa, K., Fujii, T., 2012. Anammox organism KSU-1 expresses a NirK-type copper-containing nitrite reductase instead of a NirS-type with cytochrome cd1. FEBS Lett.
    72. Hong, P.Y., Wu, J.H., Liu, W.T., 2009. A high-throughput and quantitative hierarchical oligonucleotide primer extension (HOPE)-based approach to identify sources of faecal contamination in water bodies. Environ. Microbiol.
    73. Hou, X., Liu, S., Zhang, Z., 2015. Role of extracellular polymeric substance in determining the high aggregation ability ofanammox sludge. Water Res. 75, 51–62.
    74. Hu, B., Shen, L., Xu, X., Zheng, P., 2011. Anaerobic ammonium oxidation (anammox) in different natural ecosystems: Table 1. Biochem. Soc. Trans. 39, 1811–1816.
    75. Hu, S., Zeng, R.J., Haroon, M.F., Keller, J., Lant, P.A., Tyson, G.W., Yuan, Z., 2015. A laboratory investigation of interactions between denitrifying anaerobic methane oxidation (DAMO) and anammox processes in anoxic environments. Sci. Rep. 5, 1–9.
    76. Hu, Z., Speth, D.R., Francoijs, K.J., Quan, Z.X., Jetten, M.S.M., 2012. Metagenome analysis of a complex community reveals the metabolic blueprint of anammox bacterium “Candidatus Jettenia asiatica.” Front. Microbiol. 3, 1–9.
    77. Ji, Z., Chen, Y., 2010. Using sludge fermentation liquid to improve wastewater short-cut nitrification-denitrification and denitrifying phosphorus removal via nitrite. Environ. Sci. Technol. 44, 8957–8963.
    78. Jones, R.D., Morita, R.Y., Koops, H.-P., Watson, S.W., 1988. A new marine ammonium-oxidizing bacterium, Nitrosomonas cryotolerans sp. nov. Can. J. Microbiol. 34, 1122–1128.
    79. Kartal, B., Koleva, M., Arsov, R., van derStar, W., Jetten, M.S.M., Strous, M., 2006. Adaptation of a freshwater anammox population to high salinity wastewater. J. Biotechnol. 126, 546–553.
    80. Kartal, B., Kuypers, M.M.M., Lavik, G., Schalk, J., Op Den Camp, H.J.M., Jetten, M.S.M., Strous, M., 2007a. Anammox bacteria disguised as denitrifiers: Nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ. Microbiol. 9, 635–642.
    81. Kartal, B., Maalcke, W.J., DeAlmeida, N.M., Cirpus, I., Gloerich, J., Geerts, W., Op Den Camp, H.J.M., Harhangi, H.R., Janssen-Megens, E.M., Francoijs, K.J., Stunnenberg, H.G., Keltjens, J.T., Jetten, M.S.M., Strous, M., 2011. Molecular mechanism of anaerobic ammonium oxidation. Nature 479, 127–130.
    82. Kartal, B., Rattray, J., vanNiftrik, L.A., van deVossenberg, J., Schmid, M.C., Webb, R.I., Schouten, S., Fuerst, J.A., Damsté, J.S., Jetten, M.S.M., Strous, M., 2007b. Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol. 30, 39–49.
    83. Kartal, B., VanNiftrik, L., Rattray, J., Van DeVossenberg, J.L.C.M., Schmid, M.C., Sinninghe Damst??, J., Jetten, M.S.M., Strous, M., 2008. Candidatus “Brocadia fulgida”: An autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol. Ecol. 63, 46–55.
    84. Khramenkov, S.V., Kozlov, M.N., Kevbrina, M.V., Dorofeev, A.G., Kazakova, E.A., Grachev, V.A., Kuznetsov, B.B., Polyakov, D.Y., Nikolaev, Y.A., 2013. A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented sludge. Microbiology 82, 628–636.
    85. Kim, M., Oh, H.S., Park, S.C., Chun, J., 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64, 346–351.
    86. Koch, H., Galushko, A., Albertsen, M., 2014. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science (80-. ). 1052, 10–13.
    87. Koch, H., Lücker, S., Albertsen, M., Kitzinger, K., Herbold, C., Spieck, E., Nielsen, P.H., Wagner, M., Daims, H., 2015. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc. Natl. Acad. Sci. 112, 11371–11376.
    88. Könneke, M., Bernhard, A.E., DeLa Torre, J.R., Walker, C.B., Waterbury, J.B., Stahl, D.A., 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546.
    89. Kozlowski, J.A., Stieglmeier, M., Schleper, C., Klotz, M.G., Stein, L.Y., 2016. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME J. 10, 1836–1845.
    90. Kuypers, M.M.M., Marchant, H.K., Kartal, B., 2018. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276.
    91. Labrenz, M., Sintes, E., Toetzke, F., Zumsteg, A., Herndl, G.J., Seidler, M., Jürgens, K., 2010. Relevance of a crenarchaeotal subcluster related to Candidatus Nitrosopumilus maritimus to ammonia oxidation in the suboxic zone of the central Baltic Sea. ISME J. 4, 1496–1508.
    92. Lackner, S., Gilbert, E.M., Vlaeminck, S.E., Joss, A., Horn, H., vanLoosdrecht, M.C.M., 2014. Full-scale partial nitritation/anammox experiences - An application survey. Water Res. 55, 292–303.
    93. Lam, P., Lavik, G., Jensen, M.M., van deVossenberg, J., Schmid, M., Woebken, D., Gutierrez, D., Amann, R., Jetten, M.S.M., Kuypers, M.M.M., 2009. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl. Acad. Sci. 106, 4752–4757.
    94. Lane, D.J., 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl Acad. Sci. USA 82, 6955–6959.
    95. Lawson, C.E., Lücker, S., 2018. Complete ammonia oxidation: an important control on nitrification in engineered ecosystems? Curr. Opin. Biotechnol. 50, 158–165.
    96. Lawson, C.E., Wu, S., Bhattacharjee, A.S., Hamilton, J.J., McMahon, K.D., Goel, R., Noguera, D.R., 2017. Metabolic network analysis reveals microbial community interactions in anammox granules. Nat. Commun. 8, 1–12.
    97. Lebedeva, E.V., Off, S., Zumbrägel, S., Kruse, M., Shagzhina, A., Lücker, S., Maixner, F., Lipski, A., Daims, H., Spieck, E., 2011. Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium from a geothermal spring. FEMS Microbiol. Ecol. 75, 195–204.
    98. Lehtovirta-Morley, L.E., 2018. Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol. Lett. 365, 1–9.
    99. Lehtovirta-Morley, L.E., Ross, J., Hink, L., Weber, E.B., Gubry-Rangin, C., Thion, C., Prosser, J.I., Nicol, G.W., 2016. Isolation of “Candidatus Nitrosocosmicus franklandus”, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol. Ecol. 92, 1–10.
    100. Lehtovirta-Morley, L.E., Stoecker, K., Vilcinskas, A., Prosser, J.I., Nicol, G.W., 2011. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc. Natl. Acad. Sci. 108, 15892–15897.
    101. Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I., Schuster, S.C., Schleper, C., 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809.
    102. Leth, S., Hannisdal, B., Lanzén, A., Baumberger, T., Flesland, K., 2012. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc. Natl. Acad. Sci. 109, 16764–16765.
    103. Li, B., Irvin, S., Baker, K., 2007. The variation of nitrifying bacterial population sizes in a sequencing batch reactor (SBR) treating low, mid, high concentrated synthetic wastewater. J. Environ. Eng. Sci. 6, 651–663.
    104. Li, X.R., Du, B., Fu, H.X., Wang, R.F., Shi, J.H., Wang, Y., Jetten, M.S.M., Quan, Z.X., 2009. The bacterial diversity in an anaerobic ammonium-oxidizing (anammox) reactor community. Syst. Appl. Microbiol. 32, 278–289.
    105. Liu, G., Wang, J., 2013. Long-term low DO enriches and shifts nitrifier community in activated sludge. Environ. Sci. Technol. 47, 5109–5117.
    106. Liu, Y., Sun, J., Peng, L., Wang, D., Dai, X., Ni, B.J., 2016. Assessment of heterotrophic growth supported by soluble microbial products in anammox biofilm using multidimensional modeling. Sci. Rep. 6, 1–11.
    107. Lücker, S., Nowka, B., Rattei, T., Spieck, E., Daims, H., 2013. The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front. Microbiol. 4, 1–19.
    108. Lücker, S., Schwarz, J., Gruber-Dorninger, C., Spieck, E., Wagner, M., Daims, H., 2015. Nitrotoga-like bacteria are previously unrecognized key nitrite oxidizers in full-scale wastewater treatment plants. ISME J. 9, 708–720.
    109. Lucker, S., Wagner, M., Maixner, F., Pelletier, E., Koch, H., Vacherie, B., Rattei, T., Damste, J.S.S., Spieck, E., LePaslier, D., Daims, H., 2010. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc. Natl. Acad. Sci. 107, 13479–13484.
    110. Maia, L.B., Moura, J.J.G., 2014. How biology handles nitrite. Chem. Rev. 114, 5273–5357.
    111. Maixner, F., Noguera, D.R., Anneser, B., Stoecker, K., Wegl, G., Wagner, M., Daims, H., 2006. Nitrite concentration influences the population structure of Nitrospira-like bacteria. Environ. Microbiol. 8, 1487–1495.
    112. Martens-Habbena, W., Berube, P.M., Urakawa, H., DeLa Torre, J.R., Stahl, D.A., 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461, 976–979.
    113. Mobarry, B.K., Wagner, M., Urbain, V., Rittmann, B.E., Stahl, D.A., 1996. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62, 2156–2162.
    114. Mohamed, N.M., Saito, K., Tal, Y., Hill, R.T., 2010. Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J. 4, 38–48.
    115. Mulder, a, Graaf, a a, Robertson, L. a, Kuenen, J.G., 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. Fems Microbiol. Ecol.
    116. Mussmann, M., Brito, I., Pitcher, A., Sinninghe Damste, J.S., Hatzenpichler, R., Richter, A., Nielsen, J.L., Nielsen, P.H., Muller, A., Daims, H., Wagner, M., Head, I.M., 2011. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc. Natl. Acad. Sci. 108, 16771–16776.
    117. Neef, A., Amann, R., Schlesner, H., Schleifer, K.H., 1998. Monitoring a widespread bacterial group: In situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology 144, 3257–3266.
    118. Ni, B.J., Ruscalleda, M., Smets, B.F., 2012. Evaluation on the microbial interactions of anaerobic ammonium oxidizers and heterotrophs in Anammox biofilm. Water Res. 46, 4645–4652.
    119. Nielsen, M., Bollmann, A., Sliekers, O., Jetten, M., Schmid, M., Strous, M., Schmidt, I., Larsen, L.H., Nielsen, L.P., Revsbech, N.P., 2005. Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor. FEMS Microbiol. Ecol. 51, 247–256.
    120. Nogueira, R., Melo, L.F., 2006. Competition between Nitrospira spp. and Nitrobacter spp. in nitrite-oxidizing bioreactors. Biotechnol. Bioeng.
    121. Nowka, B., Daims, H., Spieck, E., 2015. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: Nitrite availability as a key factor in niche differentiation. Appl. Environ. Microbiol. 81, 745–753.
    122. Nunoura, T., Takaki, Y., Hirai, M., Shimamura, S., Makabe, A., Koide, O., Kikuchi, T., Miyazaki, J., Koba, K., Yoshida, N., Sunamura, M., Takai, K., 2015. Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth. Proc. Natl. Acad. Sci. 112, E1230–E1236.
    123. Okabe, S., Kindaichi, T., Ito, T., 2005. Fate of C-14-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms. Appl. Environ. Microbiol. 71, 3987–3994.
    124. Oren, A., 2014. The Family Rhodocyclaceae, in: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 975–998.
    125. Oshiki, M., Ali, M., Shinyako-Hata, K., Satoh, H., Okabe, S., 2016a. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by “Candidatus Brocadia sinica.” Environ. Microbiol.
    126. Oshiki, M., Ishii, S., Yoshida, K., Fujii, N., Ishiguro, M., Satoh, H., Okabe, S., 2013. Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (anammox) bacteria. Appl. Environ. Microbiol. 79, 4087–4093.
    127. Oshiki, M., Satoh, H., Okabe, S., 2016b. Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environ. Microbiol. 18, 2784–2796.
    128. Oshiki, M., Shimokawa, M., Fujii, N., Satoh, H., Okabe, S., 2011. Physiological characteristics of the anaerobic ammonium-oxidizing bacterium “Candidatus Brocadia sinica.” Microbiology 157, 1706–1713.
    129. Oshiki, M., Shinyako-Hata, K., Satoh, H., Okabe, S., 2015. Draft Genome Sequence of an Anaerobic Ammonium-Oxidizing Bacterium,“Candidatus Brocadia sinica.” Genome Announc. 3, 3–4.
    130. Pachiadaki, M.G., Sintes, E., Bergauer, K., Brown, J.M., Record, N.R., Swan, B.K., Mathyer, M.E., Hallam, S.J., Lopez-Garcia, P., Takaki, Y., Nunoura, T., Woyke, T., Herndl, G.J., Stepanauskas, R., 2017. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358, 1046–1051.
    131. Palatinszky, M., Herbold, C., Jehmlich, N., Pogoda, M., Han, P., VonBergen, M., Lagkouvardos, I., Karst, S.M., Galushko, A., Koch, H., Berry, D., Daims, H., Wagner, M., 2015. Cyanate as an energy source for nitrifiers. Nature 524, 105–108.
    132. Palomo, A., Pedersen, A.G., Fowler, S.J., Dechesne, A., Sicheritz-Pontén, T., Smets, B.F., 2018. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME J. 1–15.
    133. Park, H., Rosenthal, A., Jezek, R., Ramalingam, K., Fillos, J., Chandran, K., 2010. Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation (anammox) bioreactor communities. Water Res. 44, 5005–5013.
    134. Park, H.D., Noguera, D.R., 2008. Nitrospira community composition in nitrifying reactors operated with two different dissolved oxygen levels. J. Microbiol. Biotechnol. 18, 1470–1474.
    135. Park, H.D., Noguera, D.R., 2004. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res. 38, 3275–3286.
    136. Park, H.D., Wells, G.F., Bae, H., Griddle, C.S., Francis, C.A., 2006. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl. Environ. Microbiol. 72, 5643–5647.
    137. Peng, L., Ni, B.J., Erler, D., Ye, L., Yuan, Z., 2014. The effect of dissolved oxygen on N2O production by ammonia-oxidizing bacteria in an enriched nitrifying sludge. Water Res. 66, 12–21.
    138. Pérez, J., Buchanan, A., Mellbye, B., Ferrell, R., Chang, J.H., Chaplen, F., Bottomley, P.J., Arp, D.J., Sayavedra-Soto, L.A., 2014. Interactions of Nitrosomonas europaea and Nitrobacter winogradskyi grown in co-culture. Arch. Microbiol. 197, 79–89.
    139. Pjevac, P., Schauberger, C., Poghosyan, L., Herbold, C.W., vanKessel, M.A.H.J., Daebeler, A., Steinberger, M., Jetten, M.S.M., Lücker, S., Wagner, M., Daims, H., 2017. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1–11.
    140. Pommerening-Röser, A., Koops, H.P., 2005. Environmental pH as an important factor for the distribution of urease positive ammonia-oxidizing bacteria. Microbiol. Res. 160, 27–35.
    141. Prosser, J.I., Nicol, G.W., 2012. Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–531.
    142. Purkhold, U., Pommerening-röser, A., Schmid, M.C., Koops, H.-P., Juretschko, S., Wagner, M., 2000. Phylogeny of All Recognized Species of Ammonia Oxidizers Based on Comparative 16S rRNA and amoA Sequence Analysis : Implications for Molecular Diversity Surveys Phylogeny of All Recognized Species of Ammonia Oxidizers Based on Comparative 16S rRNA and amo. Appl. Environ. Microbiol. 66, 5368–5382.
    143. Purkhold, U., Wagner, M., Timmermann, G., Pommerening-Röser, A., Koops, H.P., 2003. 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: Extension of the dataset and proposal of a new lineage within the nitrosomonads. Int. J. Syst. Evol. Microbiol. 53, 1485–1494.
    144. Ravishankara, A.R., Daniel, J.S., Portmann, R.W., 2009. Nitrous Oxide (N 2 O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science (80-. ). 326, 123–125.
    145. Risgaard-Petersen, N., Langezaal, A.M., Ingvardsen, S., Schmid, M.C., Jetten, M.S.M., Op Den Camp, H.J.M., Derksen, J.W.M., Piña-Ochoa, E., Eriksson, S.P., Nielsen, L.P., Revsbech, N.P., Cedhagen, T., Van DerZwaan, G.J., 2006. Evidence for complete denitrification in a benthic foraminifer. Nature 443, 93–96.
    146. Sauder, L.A., Albertsen, M., Engel, K., Schwarz, J., Nielsen, P.H., Wagner, M., Neufeld, J.D., 2017. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J. 11, 1142–1157.
    147. Scarascia, G., Cheng, H., Harb, M., Hong, P.Y., 2017. Application of hierarchical oligonucleotide primer extension (HOPE) to assess relative abundances of ammonia- and nitrite-oxidizing bacteria. BMC Microbiol. 17, 1–16.
    148. Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M., Metzger, J.W., Schleifer, K.H., Wagner, M., 2000. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23, 93–106.
    149. Schmid, M.C., Maas, B., Dapena, A., van dePas-Schoonen, K., van deVossenberg, J., vanNiftrik, L., Schmidt, I., Kartal, B., Cirpus, I., Wagner, M., Sinninghe Damste´, J.S., Kuenen, J.G., Kuypers, M., Mendez, R., Revsbech, N.P., Jetten, M.S.M., Strous, M., 2005. Biomarkers for In Situ Detection of Anaerobic Ammonium-Oxidizing
    (Anammox) Bacteria. Appl. Environ. Microbiol. 71, 1677–1684.
    150. Schmid, M.C., Risgaard-Petersen, N., Van DeVossenberg, J., Kuypers, M.M.M., Lavik, G., Petersen, J., Hulth, S., Thamdrup, B., Canfield, D., Dalsgaard, T., Rysgaard, S., Sejr, M.K., Strous, M., Op Den Camp, H.J.M., Jetten, M.S.M., 2007. Anaerobic ammonium-oxidizing bacteria in marine environments: Widespread occurrence but low diversity. Environ. Microbiol.
    151. Schott, J., Griffin, B.M., Schink, B., 2010. Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17. Microbiology 156, 2428–2437.
    152. Sedlacek, C.J., Nielsen, S., Greis, K.D., Haffey, W.D., Revsbech, P., Ticak, T., Laanbroek, H.J., Bollmann, A., 2016. Effects of Bacterial Community Members on the Proteome of the ammonia-oxidizingbacterium Nitrosomonas sp. Strain Is79. Appl. Environ. Microbiol. 82, 4776–4788.
    153. Shen, J.P., Zhang, L.M., Di, H.J., He, J.Z., 2012. A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Front. Microbiol. 3, 1–7.
    154. Simon, J., Klotz, M.G., 2013. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochim. Biophys. Acta - Bioenerg. 1827, 114–135.
    155. Sliekers, A.O., Haaijer, S.C.M., Stafsnes, M.H., Kuenen, J.G., Jetten, M.S.M., 2005. Competition and coexistence of aerobic ammonium- and nitrite-oxidizing bacteria at low oxygen concentrations. Appl. Microbiol. Biotechnol. 68, 808–817.
    156. Sonthiphand, P., Hall, M.W., Neufeld, J.D., 2014. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Front. Microbiol. 5, 1–14.
    157. Sorokin, D.Y., Lücker, S., Vejmelkova, D., Kostrikina, N.A., Kleerebezem, R., Rijpstra, W.I.C., Sinninghe Damsté, J.S., LePaslier, D., Muyzer, G., Wagner, M., VanLoosdrecht, M.C.M., Daims, H., 2012. Nitrification expanded: Discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J. 6, 2245–2256.
    158. Spang, A., Hatzenpichler, R., Brochier-Armanet, C., Rattei, T., Tischler, P., Spieck, E., Streit, W., Stahl, D.A., Wagner, M., Schleper, C., 2010. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol. 18, 331–340.
    159. Speth, D.R., Hu, B., Bosch, N., Keltjens, J.T., Stunnenberg, H.G., Jetten, M.S.M., 2012. Comparative genomics of two independently enriched “Candidatus Kuenenia stuttgartiensis” anammox bacteria. Front. Microbiol. 3, 1–7.
    160. Speth, D.R., In’T Zandt, M.H., Guerrero-Cruz, S., Dutilh, B.E., Jetten, M.S.M., 2016. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system. Nat. Commun. 7.
    161. Speth, D.R., Russ, L., Kartal, B., op den Camp, H.J.M., Dutilh, B.E., Jetten, M.S.M., 2015. Draft Genome Sequence of Anammox Bacterium “Candidatus Scalindua brodae,” Obtained Using Differential Coverage Binning of Sequencing Data from Two Reactor Enrichments. Genome Announc. 3, e01415-14.
    162. Spieck, E., Bock, E., 2005. The lithoautotrophic nitrite-oxidizing bacteria. Bergey’s Manual® Syst. Bacteriol. 149–153.
    163. Spieck, E., Hartwig, C., McCormack, I., Maixner, F., Wagner, M., Lipski, A., Daims, H., 2006. Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge. Environ. Microbiol. 8, 405–415.
    164. Starkenburg, S.R., Chain, P.S.G., Sayavedra-Soto, L. a, Hauser, L., Land, M.L., Larimer, F.W., Malfatti, S. a, Klotz, M.G., Bottomley, P.J., Arp, D.J., Hickey, W.J., 2006. Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255. Appl. Environ. Microbiol. 72, 2050–2063.
    165. Stein, L.Y., 2016. Heterotrophic Nitrification and Nitrifier Denitrification. Nitrification 95–114.
    166. Stein, L.Y., Arp, D.J., 1998. Loss of Ammonia Monooxygenase Activity in Nitrosomonas europaea upon Exposure to Nitrite Loss of Ammonia Monooxygenase Activity in Nitrosomonas europaea upon Exposure to Nitrite 64, 4098–4102.
    167. Stephen, J.R., Kowalchuk, G.A., Bruns, M.A.V., McCaig, A.E., Phillips, C.J., Embley, T.M., Prosser, J.I., 1998. Analysis of β-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl. Environ. Microbiol. 64, 2958–2965.
    168. Strous, M., Fuerst, J.A., Kramer, E.H.M., Logemann, G.M., van dePas-Schoonen, K.T., Webb, R., Kuenen, J, J.G., Etten, M.S.M., 1999. Missing lithotroph identi ® ed as new planctomycete. Nature 400.
    169. Strous, M., Pelletier, E., Mangenot, S., Rattei, T., Lehner, A., Taylor, M.W., Horn, M., Daims, H., Bartol-Mavel, D., Wincker, P., Barbe, V., Fonknechten, N., Vallenet, D., Segurens, B., Schenowitz-Truong, C., Médigue, C., Collingro, A., Snel, B., Dutilh, B.E., Op Den Camp, H.J.M., Van DerDrift, C., Cirpus, I., Van DePas-Schoonen, K.T., Harhangi, H.R., VanNiftrik, L., Schmid, M., Keltjens, J., Van DeVossenberg, J., Kartal, B., Meier, H., Frishman, D., Huynen, M.A., Mewes, H.W., Weissenbach, J., Jetten, M.S.M., Wagner, M., LePaslier, D., 2006. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440, 790–794.
    170. Suzuki, I., Kwok, S., 1974. Ammonia or Ammonium Ion as Substrate for Oxidation by Nitrosomonas-Europaea Cells and Extracts. J. Bacteriol. 120, 556–558.
    171. Talbot, G., Topp, E., Palin, M.F., Massé, D.I., 2008. Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res. 42, 513–537.
    172. Trends, R., Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., Sutton, M.A., 2008. Transformation of the Nitrogen Cycle : Recent Trends, Questions, and Potential Solutions 1, 889–893.
    173. Tsementzi, D., Wu, J., Deutsch, S., Nath, S., Rodriguez-R, L.M., Burns, A.S., Ranjan, P., Sarode, N., Malmstrom, R.R., Padilla, C.C., Stone, B.K., Bristow, L.A., Larsen, M., Glass, J.B., Thamdrup, B., Woyke, T., Konstantinidis, K.T., Stewart, F.J., 2016. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature 536, 179–183.
    174. Ushiki, N., Fujitani, H., Aoi, Y., Tsuneda, S., 2013. Isolation of Nitrospira belonging to Sublineage II from a Wastewater Treatment Plant. Microbes Environ. 28, 346–353.
    175. Ushiki, N., Fujitani, H., Shimada, Y., Morohoshi, T., Sekiguchi, Y., Tsuneda, S., 2018. Genomic analysis of two phylogenetically distinct Nitrospira species reveals their genomic plasticity and functional diversity. Front. Microbiol. 8, 1–12.
    176. Ushiki, N., Jinno, M., Fujitani, H., Suenaga, T., Terada, A., Tsuneda, S., 2017. Nitrite oxidation kinetics of two Nitrospira strains: The quest for competition and ecological niche differentiation. J. Biosci. Bioeng. 123, 581–589.
    177. Van deVossenberg, J., Woebken, D., Maalcke, W.J., Wessels, H.J.C.T., Dutilh, B.E., Kartal, B., Janssen-Megens, E.M., Roeselers, G., Yan, J., Speth, D., Gloerich, J., Geerts, W., Van derBiezen, E., Pluk, W., Francoijs, K.J., Russ, L., Lam, P., Malfatti, S.A., Tringe, S.G., Haaijer, S.C.M., Op den Camp, H.J.M., Stunnenberg, H.G., Amann, R., Kuypers, M.M.M., Jetten, M.S.M., 2013. The metagenome of the marine anammox bacterium “Candidatus Scalindua profunda” illustrates the versatility of this globally important nitrogen cycle bacterium. Environ. Microbiol. 15, 1275–1289.
    178. van derStar, W.R.L., Abma, W.R., Blommers, D., Mulder, J.W., Tokutomi, T., Strous, M., Picioreanu, C., vanLoosdrecht, M.C.M., 2007. Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam. Water Res. 41, 4149–4163.
    179. Van DerStar, W.R.L., Miclea, A.I., VanDongen, U.G.J.M., Muyzer, G., Picioreanu, C., VanLoosdrecht, M.C.M., 2008. The membrane bioreactor: A novel tool to grow anammox bacteria as free cells. Biotechnol. Bioeng. 101, 286–294.
    180. VanGool, A., Laudelout, H., 1966. Formate utilization by Nitrobacter wibogradskyi. BBA - Gen. Subj. 127, 295–301.
    181. VanKessel, M.A.H.J., Speth, D.R., Albertsen, M., Nielsen, P.H., Op Den Camp, H.J.M., Kartal, B., Jetten, M.S.M., Lücker, S., 2015. Complete nitrification by a single microorganism. Nature 528, 555–559.
    182. Vaulot, D., Kuypers, M.M.M., Zehr, J.P., 2012. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga 1546–1550.
    183. Verhamme, D.T., Prosser, J.I., Nicol, G.W., 2011. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. 5, 1067–1071.
    184. Voytek, M.A., Ward, B.B., 1995. Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Appl. Environ. Microbiol. 61, 1444–1450.
    185. Wagner, J., Coupland, P., Browne, H.P., Lawley, T.D., Francis, S.C., Parkhill, J., 2016. Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification. BMC Microbiol. 16, 1–17.
    186. Wang, J., Gu, J.D., 2013. Dominance of Candidatus Scalindua species in anammox community revealed in soils with different duration of rice paddy cultivation in Northeast China. Appl. Microbiol. Biotechnol. 97, 1785–1798.
    187. Wang, Y., Ma, L., Mao, Y., Jiang, X., Xia, Y., Yu, K., Li, B., Zhang, T., 2017. Comammox in drinking water systems. Water Res. 116, 332–341.
    188. Wang, Z., Kadouri, D.E., Wu, M., Casida, L., Germida, J., Casida, L., Chen, H., Athar, R., Zheng, G., Williams, H., Jurkevitch, E., Jurkevitch, E., Davidov, Y., Dashiff, A., Junka, R., Libera, M., Kadouri, D., Lambina, V., Afinogenova, A., Penobad, Z.R., Konovalova, S., Andreev, L., Kadouri, D., Venzon, N., O, G., Davidov, Y., Huchon, D., Koval, S., Jurkevitch, E., Afinogenova, A., Markelova, N., Lambina, V., Lambina, V., Afinogenova, A., Penabad, S.R., Konovalova, S., Pushkareva, A., Berleman, J., Kirby, J., Sockett, R., Rendulic, S., Jagtap, P., Rosinus, A., Eppinger, M., Baar, C., Lanz, C., Keller, H., Lambert, C., Evans, K., Goesmann, A., Goldman, B., Nierman, W., Kaiser, D., Slater, S., Durkin, A., Eisen, J., Ronning, C., Barbazuk, W., Blanchard, M., Field, C., Horvath, P., Barrangou, R., Lathe, W., Bork, P., Andersson, S., Zomorodipour, A., Andersson, J., Sicheritz-Ponten, T., Alsmark, U., Podowski, R., Naslund, A., Eriksson, A., Winkler, H., Kurland, C., Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y., Ishikawa, H., Stephens, R., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., Mitchell, W., Olinger, L., Tatusov, R., Zhao, Q., Rocap, G., Larimer, F., Lamerdin, J., Malfatti, S., Chain, P., Ahlgren, N., Arellano, A., Coleman, M., Hauser, L., Hess, W., Giovannoni, S., Tripp, H., Givan, S., Podar, M., Vergin, K., Baptista, D., Bibbs, L., Eads, J., Richardson, T., Noordewier, M., Oh, H., Kwon, K., Kang, I., Kang, S., Lee, J., Kim, S., Cho, J., Seidler, R., Starr, M., Ishiguro, E., Dashiff, A., Kadouri, D., Wilson, A., Ashton, P., Calevro, F., Charles, H., Colella, S., Febvay, G., Jander, G., Kushlan, P., Macdonald, S., Schwartz, J., Waters, E., Hohn, M., Ahel, I., Graham, D., Adams, M., Barnstead, M., Beeson, K., Bibbs, L., Bolanos, R., Keller, M., Dubey, G., Ben-Yehuda, S., Huber, H., Hohn, M., Rachel, R., Fuchs, T., Wimmer, V., Stetter, K., Casida, L., Lally, E., Hill, R., Kieba, I., Korostoff, J., Bhakdi, S., Mackman, N., Nicaud, J., Holland, I., Litwin, C., Calderwood, S., Sharon, N., Lis, H., Chemeris, N., Afinogennova, A., Dashiff, A., Keeling, T., Kadouri, D., Ruggeri, Z., Ware, J., Beck, S., Schwudke, D., Appel, B., Linscheid, M., Strauch, E., Tudor, J., Karp, M., Frey, J., Sandkvist, M., Severin, A., Markelova, N., Afinogenova, A., Kulaev, I., Medina, A., Shanks, R., Kadouri, D., Mattick, J., Evans, K., Lambert, C., Sockett, R., Mahmoud, K., Koval, S., Wozniak, R., Waldor, M., Burrus, V., Waldor, M., Gal-Mor, O., Finlay, B., Schmidt, H., Hensel, M., Oliver, H., Orsi, R., Ponnala, L., Keich, U., Wang, W., Sun, Q., Cartinhour, S., Filiatrault, M., Wiedmann, M., Boor, K., Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., Snyder, M., Yoder-Himes, D., Chain, P., Zhu, Y., Wurtzel, O., Rubin, E., Tiedje, J., Sorek, R., Jiang, W., Hou, Y., Inouye, M., Graumann, P., Wendrich, T., Weber, M., Schroder, K., Marahiel, M., Sommerville, J., Gordon, R., Stein, M., Diedrich, D., Lambert, C., Hobley, L., Chang, C., Fenton, A., Capeness, M., Sockett, L., Kurtz, S., Wu, M., Eisen, J., Guindon, S., Gascuel, O., Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M., Barrell, B., Livak, K., Schmittgen, T., 2011. Genomic insights into an obligate epibiotic bacterial predator: Micavibrio aeruginosavorus ARL-13. BMC Genomics 12, 453.
    189. Weber, E.B., Lehtovirta-Morley, L.E., Prosser, J.I., Gubry-Rangin, C., 2015. Ammonia oxidation is not required for growth of group 1.1c soil Thaumarchaeota. FEMS Microbiol. Ecol. 91, 1–7.
    190. Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J., 1991. 16S ribosomal DNA amplification for phylogenetic study. Weisburg, WG 173, 697–703.
    191. Wilderer, P.A., Bungartz, H.J., Lemmer, H., Wagner, M., Keller, J., Wuertz, S., 2002. Modern scientific methods and their potential in wastewater science and technology. Water Res. 36, 370–393.
    192. Winkler, M.K.H., Bassin, J.P., Kleerebezem, R., Sorokin, D.Y., VanLoosdrecht, M.C.M., 2012. Unravelling the reasons for disproportion in the ratio of AOB and NOB in aerobic granular sludge. Appl. Microbiol. Biotechnol. 94, 1657–1666.
    193. Wintzingerode, F., Göbel, U.B., Stackebrandt, E., 1997. Determination if microbial diversity in environmental samples: pitfalls of PCR-based analysis. FEMS Microbiol. Rev.
    194. Wu, J.-H., Hsu, M.-H., Hung, C.-H., Tseng, I.-C., Lin, T.-F., 2010. Development of a Hierarchical Oligonucleotide Primer Extension Assay for the Qualitative and Quantitative Analysis of Cylindrospermopsis raciborskii Subspecies in Freshwater. Microbes Environ. 25, 103–110.
    195. Wu, J.H., Chuang, H.P., Hsu, M.H., Chen, W.Y., 2013. Use of a hierarchical oligonucleotide primer extension approach for multiplexed relative abundance analysis of methanogens in anaerobic digestion systems. Appl. Environ. Microbiol. 79, 7598–7609.
    196. Wu, J.H., Hong, P.Y., Liu, W.T., 2009. Quantitative effects of position and type of single mismatch on single base primer extension. J. Microbiol. Methods 77, 267–275.
    197. Wu, J.H., Liu, W.T., 2007. Quantitative multiplexing analysis of PCR-amplified ribosomal RNA genes by hierarchical oligonucleotide primer extension reaction. Nucleic Acids Res. 35.
    198. Yamagishi, T., Takeuchi, M., Wakiya, Y., Waki, M., 2013. Distribution and characterization of anammox in a swine wastewater activated sludge facility. Water Sci. Technol. 67, 2330 LP-2336.
    199. Yan, Y., Yang, J., Dou, Y., Chen, M., Ping, S., Peng, J., Lu, W., Zhang, W., Yao, Z., Li, H., Liu, W., He, S., Geng, L., Zhang, X., Yang, F., Yu, H., Zhan, Y., Li, D., Lin, Z., Wang, Y., Elmerich, C., Lin, M., Jin, Q., 2008. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc. Natl. Acad. Sci. 105, 7564–7569.
    200. Yapsakli, K., Aliyazicioglu, C., Mertoglu, B., 2011. Identification and quantitative evaluation of nitrogen-converting organisms in a full-scale leachate treatment plant. J. Environ. Manage. 92, 714–723.
    201. Zarda, B., Hahn, D., Chatzinotas, A., Schonhuber, W., Neef, A., Amann, R.I., Zeyer, J., Schönhuber, W., 1997. Analysis of bacterial community structure in bulk soil by in situ hybridization. Arch. Microbiol. 168, 185–192.
    202. Zehr, J.P., Jenkins, B.D., Short, S.M., Steward, G.F., 2003. Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ. Microbiol. 5, 539–554.
    203. Zhang, L.M., Hu, H.W., Shen, J.P., He, J.Z., 2012. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J. 6, 1032–1045.
    204. Zhang, T., Jin, T., Yan, Q., 2010. Characterization and quantification of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR. Appl. Microbiol. Biotechnol. 87, 1167–1176.
    205. Zheng, D., Alm, E.W., Stahl, D. a, Raskin, L., Zheng, D., Alm, E.W., Stahl, D. a, 1996. Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies . Characterization of Universal Small-Subunit rRNA Hybridization Probes for Quantitative Molecular Microbial Ecology Studies 62, 4504–4513.
    206. Zheng, S., Cui, C., Quan, Y., Sun, J., 2013. Microaerobic DO-induced microbial mechanisms responsible for enormous energy saving in upflow microaerobic sludge blanket reactor. Bioresour. Technol. 140, 192–198.


    無法下載圖示 校內:2023-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE