研究生: |
蔡佑鑫 Tsai, Yu-Hsin |
---|---|
論文名稱: |
從光熱惰性奈米立方體轉為光熱活性奈米籠於癌症治療:光熱誘發磁振造影、熱療與一氧化碳治療 A Photothermally Inactive Nanocube Converted to Photothermally Active Nanocage for 3-in-1 Thernostics of Photothermal Induced-MR Imaging, -Hyperthermia, and -CO Therapy |
指導教授: |
葉晨聖
Yeh, Chen-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 28 |
中文關鍵詞: | 鈷鐵普魯士藍 、金屬置換反應 、一氧化碳釋放分子 |
外文關鍵詞: | cobalt Prussian blue, metal replacement reaction, carbon monoxide releasing molecules(CORMs) |
相關次數: | 點閱:85 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一氧化碳可抑制細胞內粒線體活性,使其發生細胞凋亡。本篇研究選擇以高生物相容性之鈷鐵普魯士藍奈米立方體,於酸性環境下發生金屬置換反應,而產生出近紅外光波段吸收。接著,將乙二胺分子與材料表面之鐵離子進行配位螯合,使其表面帶有胺基用於將帶有羧基之一氧化碳釋放分子401修飾於表面上。合成出攜帶一氧化碳之鈷鐵普魯士藍奈米籠後,利用材料於近紅外光波段有明顯吸收之特性,材料以808 nm近紅外光雷射照射進行光熱轉換達到升溫效果,進而調控一氧化碳分子的釋放。材料結合一氧化碳氣體與光熱治療消滅癌細胞,在釋放一氧化碳的同時,原本於一氧化碳釋放分子401當中之一價錳離子會被氧化形成二價,用於增強磁振造影可做為腫瘤診斷之用途。
Carbon monoxide (CO) can inhibit the activity of mitochondria causing cell apoptosis. Herein, we design a controllable carbon monoxide releasing platform, a CO releasing molecules conjugated cobalt Prussian blue nanocages (hCPB). First, we synthesize the cobalt Prussian blue nanocubes and further treat with acid for metal replacement reaction. After the acidic corrosion, it shows the increase of near infrared (600-900 nm) absorbance as prolonged reaction time. The Fe sites on surface was chelated with ethylenediamine to yield amine-functionalized hCPB NPs followed by conjugation with CORM-401 by means of amide formation. The CORM-401 derivatized cobalt Prussian blue nanoacage exhibits NIR-responsive hyperthermia effect giving the release of CO. In our expectation, the combination of CO and photothermal therapy displays synergistic effect against cancer cells. Moreover, the Mn1+ may oxidized to Mn2+ concomitant of CO release and provide the T1-weighted MR imaging for tumor diagnosis.
1. Roy, X. et al., Prussian Blue Nanocontainers: Selectively Permeable Hollow Metal–Organic Capsules from Block Ionomer Emulsion-Induced Assembly., J. Am. Chem. Soc., 2011, 133, 8420-8423
2. Risset, O. N. et al., RbjMk[Fe(CN)6]l (M = Co, Ni) Prussian Blue Analogue Hollow Nanocubes: a New Example of a Multilevel Pore System., Chem. Mater., 2013, 25, 42-47
3. Hu, M. et al., Synthesis of Prussian Blue Nanoparticles with a Hollow Interior by Controlled Chemical Etching., Angew. Chem., 2012, 4, 1008-1012
4. Hu, M. et al., Preparation of Various Prussian Blue Analogue Hollow Nanocubes with Single Crystalline Shells., Eur. J. Inorg. Chem., 2012, 30, 4795-4799
5. Wang, J. G. et al., Cation Exchange Formation of Prussian Blue Analogue Submicroboxes for High-Performance Na-ion Hybrid Supercapacitors., Nano Energy,
2017, 39, 647-653
6. Cai, X. et al., A Prussian Blue‐Based Core–Shell Hollow‐Structured Mesoporous Nanoparticle as a Smart Theranostic Agent with Ultrahigh pH‐Responsive Longitudinal Relaxivity., Adv. Mater., 2015, 41, 6382-6389
7. Kandanapitiye, M. S. et al., Selective Ion Exchange Governed by the Irving–Williams Series in K2Zn3[Fe(CN)6]2 Nanoparticles: Toward a Designer Prodrug for Wilson’s Disease., Inorg. Chem., 2015, 54, 1212-1214
8. Mukherjee S. et al., Biocompatible Nickel-Prussian Blue@Silver Nanocomposites Show Potent Antibacterial Activities., Future Sci. OA, 2017, 4, 233
9. Hung, C. H., Prussian Blue Analogues Structure Conversion from Solid to Frame., Unpublished master dissertation, Department of Chemistry, National Cheng Kung University, Taiwan
10. Sjöstrand, T., Endogenous Formation of Carbon Monoxide in Man., Nature, 1949, 164, 580-581
11. McCoubrey, W. K. Jr. et al., Isolation and Characterization of A cDNA from The Rat Brain That Encodes Hemoprotein Heme oxygenase-3., Eur. J. Biochem., 1997, 247, 725-732
12. Otterbein, L. E. et al., Heme Oxygenase-1 and Carbon Monoxide in The Heart: The Balancing Act Between Danger Signaling and Pro-Survival., Circ. Res., 2016, 12, 1940-1959.
13. Rose, J. J. et al., Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy., Am. J. Respir. Crit. Care Med., 2017, 5, 596-606.
14. Li, W. P. et al., Controllable CO Release Following Near-Infrared Light-Induced Cleavage of Iron Carbonyl Derivatized Prussian Blue Nanoparticles for CO-Assisted Synergistic Treatment., ACS Nano, 2016, 10, 11027-11036
15. Jin, Z. et al., Intratumoral H2O2-Triggered Release of CO from A Metal Carbonylbased Nanomedicine for Efficient CO Therapy., Chem. Commun., 2017, 53, 5557-5560
16. Fan, W. et al., Generic Synthesis of Small-Sized Hollow Mesoporous Organosilica Nanoparticles for Oxygen-Independent X-Ray-Activated Synergistic Therapy., Nat. Commun., 2019, 10, 1241
17. Zhao, C. et al., A Co–Fe Prussian Blue Analogue for Efficient Fenton-Like Catalysis: The Effect of High-Spin Cobalt., Chem. Commun., 2019, 55, 7151-7154
18. Nai, J. et al., Oriented Assembly of Anisotropic Nanoparticles into Frame-Like Superstructures., Sci. Adv., 2017, 3, e1700732
19. Ghosh, S. N., Infrared Spectra of The Prussian Blue Analogs., J. Inorg. Nucl. Chem., 1974, 36, 2465-2466
20. Wu, Z. C. et al., Rattle‐Type Fe3O4@CuS Developed to Conduct Magnetically Guided Photoinduced Hyperthermia at First and Second NIR Biological Windows., Adv. Func. Mater., 2015, 41, 6527-6537