簡易檢索 / 詳目顯示

研究生: 張鈞皓
Chang, Chun-Hao
論文名稱: 綠色能源磷酸鹽類螢光材料之開發及其發光特性與應用性之探討
Development of Phosphate Based Phosphor Materials for Green Energy: Investigation of Luminescence Properties and Corresponding Applications
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 112
中文關鍵詞: 螢光粉磷酸鹽類熱穩定性
外文關鍵詞: phosphor, phosphate, thermal stability
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用固態法合成磷酸鹽類螢光材料,本文主要針對下轉換與上轉換這兩部份機制及其應用來探討之,第一部份主旨在開發可適用於紫外光發光二極體(UV-LED)之新穎組成的螢光體,我們成功合成了可用紫外光波長激發之磷酸鈣釔鋱(Ca9Y1-xTbx(PO4)7)(x=0.005~0.5)以及可用紫外光波長和藍光波長激發之磷酸鈣釔銪(Ca9Y1-xEux(PO4)7)(x=0.03~1)。主要以磷酸鈣釔(Ca9Y(PO4)7)為主體材料,分別摻雜鋱(Tb3+)、銪(Eu3+)稀土元素為發光中心,研究添加不同濃度之發光中心離子,其發光機制與濃度淬滅(concentration quenching)效應,並以X光粉末繞射、螢光光譜儀及紫外-可見光擴散式反射光譜儀鑑定其結構與發光特性。
    磷酸鈣釔鋱(Ca9Y1-xTbx(PO4)7)(x=0.005~0.5),在紫外光(370 nm)激發條件下,放射光之顏色落在藍綠~綠光範圍;在x=0.2時得到最強之綠光放射,其最強的波峰位於544 nm,CIE座標為(0.256,0.559),外部量子效率QE最高為16.8%。磷酸鈣釔銪(Ca9Y1-xEux(PO4)7)(x=0.03~1),在紫外光(395 nm)激發條件下,放射光之顏色落在橘紅光~紅光範圍,於x=1時獲得最佳放射光強度,其最強的波峰位於613 nm,CIE座標為(0.635,0.355),色純度可達到89.6%,外部量子效率QE最高為40.8%。並探討其熱穩定性,發現磷酸鈣釔鋱及磷酸鈣釔銪皆比商用螢光粉具有較佳之熱穩定性。最後我們將此兩種螢光粉體依重量百分比例混成可得到一近似白光之螢光粉體,其CIE座標為(0.322,0.333)。
    在第二部份,我們期望利用螢光材料幫助吸收紅外光之波段,提升太陽能電池之光電轉換效率。故針對太陽能電池長波長之波段吸光特性相對薄弱的缺點,進而研發具上轉換(up-conversion)效益之螢光粉。在此我們選擇了YPO4、Ca3(PO4)2、LaPO4三種主體分別共摻雜Tm3+以及Yb3+離子,探討磷酸鹽類主體於980 nm雷射激發下之上轉換效應,並以X光粉末繞射和螢光光譜儀鑑定其結構與發光特性,最後藉由不同功率之激發來探討上轉換效應的機制。

    The object of this study is to synthesize phosphate oxide based phosphors. Our experiment is mainly seperated to two parts. First is to develop a suitable phosphor powder which can apply to UV light-emitting diodes(UV-LED). We successfully composed Ca9Y1-xTbx(PO4)7 (x=0.005~0.5) and Ca9Y1-xEux(PO4)7 (x=0.03~1) which can be excited by UV wavelength. We use Ca9Y(PO4)7 as the host material, rare earth elements like Tb3+ and Eu3+ as the luminescence center. We adjusted various different concentrations of Eu3+ and Tb3+ ions to investigate its luminescence mechanism and concentration quenching effect.
    The experiments show that the color of emitting light is located at the range of blue-green to green in Ca9Y1-xTbx(PO4)7 (x=0.005~0.5) phosphor under UV light (370 nm) excitation, which has green emission at 544 nm. The maximum integral emission intensity is obtained at 20 mol% (x=0.2) Tb3+, its C.I.E coordinate is (0.256,0.559), and the highest external quantum efficiency QE up to 16.8%. The color of emitting light is located at the range of orange-red to red in Ca9Y1-xEux(PO4)7 (x=0.03~1) phosphor under 395 nm excitation, which has red light emission at 613 nm. The maximum integral emission intensity is obtained at 100 mol% (x=1) Eu3+, its C.I.E coordinate is (0.635,0.335), and the highest external quantum efficiency QE up to 40.8%. We also investigated the thermal stability, and we found that no matter Ca9Y1-xTbx(PO4)7 or Ca9Y1-xEux(PO4)7, both of which have better thermal stability than commercial phosphors. Finally, we blended these two different phosphors in weight percent to obtain a near- white light, its C.I.E coordinate is (0.322,0.333).
    In the second part, in order to enhance the photoelectric conversion efficiency of solar cell, we look forward to using fluorescent materials to help transform the infrared light to visible light. Hence, we have chosen YPO4, Ca3(PO4)2, LaPO4 as the host materials codoped with Tm3+ and Yb3+ ions, and investigated the up-conversion effect of phosphate based phosphors under 980 nm laser excitation. We found that blue emission(1G4→3H6) and red emission(1G4→3F4) conclude two mechanism:one is sequential mechanism, the other is cooperative mechanism. The near infrared(NIR) emission(3H4→3H6) also concluded two mechanism:one is sequential mechanism, the other is cross relaxation effect between Tm3+ ions.

    中文摘要 I Abstract II 致謝 V 目錄 VI 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 4 1-2-1 應用於UV-LED之下轉換綠紅光磷酸鹽類螢光粉 4 1-2-2 應用於solar cell之上轉換藍光磷酸鹽類螢光粉 5 第二章 理論基礎 7 2-1 螢光粉體之介紹 7 2-1-1 螢光體發光原理與過程 9 2-1-1-1 螢光體能量之激發與吸收 9 2-1-1-2 螢光發射與非輻射轉移 12 2-1-2-3 螢光材料之光學躍遷[25] 14 2-1-2 螢光體性質[26] 15 2-1-2-1 主體晶格對光譜之影響 15 2-1-2-2 螢光效率 16 2-1-2-3 發光亮度與濃度效應 16 2-1-3 發光中心之種類與原理 17 2-1-4 螢光材料之應用 18 2-1-5 濃度淬滅理論 19 2-2 螢光材料之組成與設計[32] 20 2-2-1 主體晶格之選擇 20 2-2-2 活化劑之選擇 21 2-2-3 抑制劑之選擇 22 2-3 稀土元素 23 2-3-1 稀土元素之電子結構 23 2-3-2 稀土元素之光學躍遷 23 第三章 實驗方法及步驟 25 3-1 實驗藥品 25 3-2 實驗步驟流程 25 3-2-1 下轉換(down-conversion)綠、紅光磷酸鹽類螢光粉 25 3-2-1-1 Ca9Y(PO4)7:Tb3+螢光粉 25 3-2-1-2 Ca9Y(PO4)7:Eu3+螢光粉 26 3-2-2 上轉換(up-conversion)藍光磷酸鹽類螢光粉 26 3-2-2-1 YPO4:Tm3+,Yb3+螢光粉 26 3-2-2-2 Ca3(PO4)2:Tm3+,Yb3+螢光粉 26 3-2-2-3 LaPO4:Tm3+,Yb3+螢光粉 27 3-3 量測系統及特性分析 27 3-3-1 量測儀器設備 27 3-3-2 特性分析 28 3-3-2-1 結構分析 28 3-3-2-2 光學性質分析 29 第四章 結果與討論 35 4-1 下轉換(down-conversion)綠紅光磷酸鹽類螢光粉體 35 4-1-1 固態法合成磷酸鈣釔鋱(Ca9Y(PO4)7:Tb3+)螢光粉體 35 4-1-1-1 Ca9Y(PO4)7:Tb3+螢光粉體之XRD分析 36 4-1-1-2 Ca9Y(PO4)7:Tb3+螢光粉體之發光特性分析 37 4-1-1-3 濃度對Tb3+離子間交叉弛緩(cross relaxation)效應的影響 40 4-1-1-4 Ca9Y(PO4)7:Tb3+螢光粉體之衰變曲線(decay curve) 42 4-1-1-5 Ca9Y(PO4)7:Tb3+螢光粉體之CIE色度座標圖 43 4-1-2 固態法合成磷酸鈣釔銪(Ca9Y(PO4)7:Eu3+)螢光粉體 57 4-1-2-1 Ca9Y(PO4)7:Eu3+螢光粉體之XRD分析 57 4-1-2-2 Ca9Y(PO4)7:Eu3+螢光粉體之發光特性分析 57 4-1-2-3 Ca9Y(PO4)7:Eu3+螢光粉體之衰變曲線(decay curve) 60 4-1-2-4 Ca9Y(PO4)7:Eu3+螢光粉體之CIE色度座標圖及量子效率 60 4-1-3 螢光粉體之熱穩定性評估 68 4-1-4 Ca9Y(PO4)7:Tb3+與Ca9Y(PO4)7:Eu3+螢光粉體之混成 71 4-2 上轉換(up-conversion)藍光磷酸鹽類螢光粉體 76 4-2-1 磷酸釔銩鐿(YPO4:Tm3+,Yb3+)螢光粉體 76 4-2-1-1 YPO4:Tm3+,Yb3+螢光粉體之XRD分析 76 4-2-1-2 YPO4:Tm3+,Yb3+螢光粉體之之光激發光譜分析 77 4-2-2 磷酸鈣銩鐿(Ca3(PO4)2:Tm3+,Yb3+)螢光粉體 82 4-2-2-1 Ca3(PO4)2:Tm3+,Yb3+螢光粉體之XRD分析 82 4-2-2-2 Ca3(PO4)2:Tm3+,Yb3+螢光粉體之發光特性分析 83 4-2-3 磷酸鑭銩鐿(LaPO4:Tm3+,Yb3+)螢光粉體 88 4-2-3-1 LaPO4:Tm3+,Yb3+螢光粉體之XRD分析 88 4-2-3-2 LaPO4:Tm3+,Yb3+螢光粉體之之光激發光譜分析 89 4-2-4 上轉換螢光粉體與激發雷射功率之關係 94 第五章 結論與未來展望 102 5-1 結論 102 5-1-1 下轉換(down-conversion)綠紅光磷酸鹽類螢光粉體 102 5-1-2 上轉換(up-conversion)藍光磷酸鹽類螢光粉體 103 5-2 未來展望 104 5-2-1 下轉換(down-conversion)綠紅光磷酸鹽類螢光粉體 104 5-2-2 上轉換(up-conversion)藍光磷酸鹽類螢光粉體 104 參考文獻 105

    [1] 楊素華, “科學發展”, 358, 71 (2002).
    [2] X. Zhang, J. Zhang, R. Wang and M. Gong, “Photo-Physical Behaviors of Efficient Green Phosphor Ba2MgSi2O7: Eu2+ and Its Application in Light-Emitting Diodes” Journal of the American Ceramic Society, 93(5),1368–1371 (2010).
    [3] S. Erdei, F. Ainger, D. Ravichandran, W. White and L. Cross, “Preparation of Eu3+: YVO4 red and Ce3+, Tb3+: LaPO4 green phosphors by hydrolyzed colloid reaction (HCR) technique.” Materials Letters ,30 (5-6), 389-393 (1997).
    [4] I. Wuled Lenggoro, B. Xia, H. Mizushima, K. Okuyama and N. Kijima,“Synthesis of LaPO4: Ce, Tb phosphor particles by spray pyrolysis.” Materials Letters, 50 (2-3), 92-96 (2001).
    [5] U. Rambabu, N. Munirathnam, T. Prakash and S. Buddhudu, “Emission spectra of LnPO4: RE3+ (Ln= La, Gd; RE= Eu, Tb and Ce) powder phosphors.” Materials Chemistry and Physics,78 (1), 160-169 (2003).
    [6] K. Sohn, J. Lee, I. Jeon and H. Park, “Combinatorial Searching for Tb-Activated Phosphors of High Efficiency at Vacuum UV Excitation.” Journal of the Electrochemical Society,150, H182 (2003).
    [7] V. Buissette, M. Moreau, T. Gacoin, J. Boilot, J. Chane-Ching and T. Le Mercier, “Colloidal Synthesis of Luminescent Rhabdophane LaPO4: Ln3+. xH2O(Ln= Ce, Tb, Eu; x=0.7) Nanocrystals” Chem. Mater, 16 (19), 3767-3773 (2004).
    [8] Y. Shimomura, T. Kurushima, R. Olivia and N. Kijima, “Synthesis of Y(P, V)O4: Eu3+ Red Phosphor by Spray Pyrolysis without Postheating” Japanese Journal of Applied Physics, 44 (3), 1356-1360 (2005).
    [9] Y. Huang, C. Yonggang, C. Jiang, S. Liang, T. Ye and H. Seo, “Vacuum Ultraviolet and Ultraviolet Spectroscopy of Tb3+-and Eu3+-Doped Na(Sr, Ba)PO4 Phosphate” Japanese Journal of Applied Physics, 47 (8), 6364-6368 (2008).
    [10] H. Zhu, H. Yang, D. Jin, Z. Wang, X. Gu, X. Yao and K. Yao, “Hydrothermal synthesis and photoluminescent properties of YV1- xPxO4: Eu3+(x= 0-1.0) nanophosphors” Journal of Nanoparticle Research, 10 (7), 1149-1154 (2008).
    [11] C. Lin, Y. Tang, S. Hu and R. Liu, “KBaPO4: Ln (Ln= Eu, Tb, Sm) phosphors for UV excitable white light-emitting diodes” Journal of Luminescence, 129(12), 1682-1684 (2009).
    [12] F. Heinroth, D. Gruss, S. Muller, F. Waltz, J. Martynczuk, A. Feldhoff, P.Behrens and M. Wiebcke, “Synthesis, characterization, and evaluation of lubrication properties of composites of ordered mesoporous carbons and
    luminescent CePO4: Tb nanocrystals” Journal of Materials Science, 45 (6),1595-1603 (2010).
    [13] H. Ding, Y. Huang, L. Shi and H. J. Seo,”Site-Selective Excitation and Luminescence Properties of Eu3+ Ions Doped in SrZn2(PO4)2” Journal of the Electrochemical Society, 157 (3), J54-J58 (2010).
    [14] Z. Hao, X. Chen, Y. Hou, F. Song, H. Wang and G. Zhang,”Blue upconversion emission in Yb3+, Tm3+ doped pentaphosphate glasses” Acta Physica Sinica, 46(6), 1206-1211 (1997).
    [15] X. Chen, Y. Feng, F. Song, K. Li, M. Li, G. Zhang, Y. Sun, X. Yang, X. Li and M. Xie, “Upconversion luminescence of Tm3+and Yb3+codoped pentaphosphate noncrystalline under the pumping of a 798 nm laser diode” Proc. SPIE 3551,103-106(1998).
    [16] M. Liao, S. Li, H. Sun, Y. Fang, L. Hu and J. Zhang,”Upconversion properties of Tm3+/Yb3+ codoped fluorophosphate glasses with low phonon density of states” Materials Letters, 60 (15), 1783-1785 (2006).
    [17] A. de Camargo, I. Terra, L. Nunes and M. Siu Li,”Energy transfer processes in Yb3+-Tm3+ co-doped sodium alumino-phosphate glasses with improved 1.8 μm emission” Journal of Physics: Condensed Matter, 20, 255240 (2008).
    [18] L. Xie, Y. Wang and H. Zhang,”Near-infrared quantum cutting in YPO4: Yb3+,Tm3+ via cooperative energy transfer” Applied Physics Letters, 94, 061905(2009).
    [19] A.Rapaport, J.Milliez, M.Bass, A.Cassanho and H.Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays.” Journal of
    Display Technology ,2 (1), 68 (2006).
    [20] B.Wybourne and W.Meggers, “Spectroscopic properties of rare earths Physics Today“ Physics Today,18, 70 (1965).
    [21] L.Menezes, G.Maciel, C.de Araujo and Y.Messaddeq, “Phonon-assisted cooperative energy transfer and frequency upconversion in a Yb/Tb codoped fluoroindate glass. ”Journal of Applied Physics, 94, 863 (2003).
    [22] S. Sivakumar, F. Van Veggel and M. Raudsepp, “Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles.” Journal of the American Chemical Society,127 (36), 12464-12465 (2005).
    [23] 蘇勉曾、吳世康, “發光材料”第四卷, 1-39 (2004).
    [24] 楊俊英, “電子產業用螢光材料之調查”, 7, 工研院 (1992).
    [25] 林麗玉, “奈米硫化鋅與硫化鋅鎘螢光體微粒之製備、特性鑑定與發光特性
    研究”, 國立交通大學應用化學研究所碩士論文 (2000).
    [26] Kitai,A.H.“Visible luminescence-Solid state materials&applications” Chapman&Hall:London (1992).
    [27] 方盈倩, 碩士論文, 成功大學電機工程研究所碩士論文 (2006)
    [28]  R. A. Swalin, “Thermodynamics of Solids,” John Wiley & Sons, 335 (1972).
    [29]  D. Dimova-Malinovska, N. Tzenov, M. Tzolov, L.Vassilev, “Optical and electrical properties of R.F. magnetron sputtered ZnO:Al thin films,”Materials Science and Engineering: B, 52, 59-62 (1998).
    [30] 劉如熹、紀喨勝, “紫外光發光二極體用螢光粉介紹” 全華科技,
    [31] R. C. Ropp, “Luminescence and solid state.” Elsevier Science Publishers, B. V,The Netherlands (1991).
    [32] G. Blasse, B.C Grabmaier, “Luminescent Materials”Springer-Verlag Berlin Heidelberg (1994).
    [33] Z. Pan, S. H. Morgan, A. Loper, V. King, B. H. Long and W. E. Collins, Appl. Phy. Lett., 77, 4688-4692 (1995).
    [34] R. Rossetti, R. Hull, J. M. Gibson, L. E. Brus, “Hybrid electronic properties between the molecular and solid state limits: Lead sulfide and silver halide crystallites.” J. Chem. Phys., 83, 1406 (1985).
    [35] 劉如熹、劉宇桓, “發光二極體用氧氮螢光粉介紹” 全華科技.
    [36] V. Morozov, A. Belik, S. Stefanovich, V. Grebenev, O. Lebedev, G. Van Tendeloo and B. Lazoryak,”High-temperature phase transition in the whitlockite-type phosphate Ca9In (PO4) 7” Journal of Solid State Chemistry,165 (2), 278-288 (2002).
    [37] 林心雁、張炎輝,”Mg2-xCaxLaTaO6 (x=0 ~ 2.0)系光致發光特性研究”,國立成功大學材料科學及工程學系碩士論文(2008).
    [38] Y. Li, Y. Chang, Y. Lin, Y. Chang and Y. Lin, “Green-Emitting Phosphor of LaAlGe2O7: Tb3+ under Near-UV Irradiation.” Electrochemical and solid-state letters, 9, H74-H77 (2006).
    [39] Z. Hao, J. Zhang, X. Zhang, S. Lu and X. Wang, “Blue-Green-Emitting Phosphor CaSc2O4: Tb3+: Tunable Luminescence Manipulated by Cross-Relaxation.” Journal of the Electrochemical Society, 156, H193-H196 (2009).
    [40] Z. Ren, C. Tao, H. Yang and S. Feng, “A novel green emitting phosphor SrAl2B2O7: Tb3+.” Materials Letters, 61 (8-9), 1654-1657 (2007).
    [41] J. Sole, L. Bausa and D. Jaque,” An introduction to the optical spectroscopy of inorganic solids.” John Wiley & Sons,Ltd (2005).
    [42] Ceed Ronda,”Luminescence:From Theory to Applications.” WILEY-VCH,2008.
    [43] Van Krevel, J.W.H.,”On New Rare-earth Doped M-Si-Al-O-N Materials, Luminescence Properties and Oxidation Resistance.” Eindhoven University of Technology, PhD Thesis (2000).
    [44] JG Solé, LE Bausá, D Jaque,” An introduction to the optical spectroscopy of inorganic solids”John Wiley & Sons,Ltd (2005).
    [45] J. Liao, B. Qiu and H. Lai, “Synthesis and luminescence properties of Tb3+:NaGd (WO4) 2 novel green phosphors.” Journal of Luminescence, 129(7),668-671 (2009).
    [46] Xinmin Zhang, Jianhui Zhang, Lifang Liang, Qiang Su, “Luminescence of SrGdGa3O7: RE3+ (RE= Eu, Tb) phosphors and energy transfer from Gd3+ to RE3+” Materials Research Bulletin, 40(2),281-288 (2005).
    [47] C. Liu, G. Che, Z. Xu and Q. Wang, “Luminescence properties of a Tb3+ activated long-afterglow phosphor.” Journal of Alloys and Compounds, 474(1-2), 250-253 (2009).
    [48] J. Liao, B. Qiu and H. Lai, “Synthesis and luminescence properties of Tb3+:NaGd(WO4)2 novel green phosphors.” Journal of Luminescence, 129 (7),668-671 (2009).
    [49] N. Bodenschatz, R. Wannemacher and D. Heber, “Electronically resonant optical cross relaxation in YAG: Tb3+” Journal of Luminescence, 47(4),159-167 (1990).
    [50] Inokuti, M. and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence.” The Journal of Chemical Physics, 43, 1978 (1965).
    [51] K. Sohn, Y. Choi, H. Park and Y. Choi,” Analysis of Tb3+ Luminescence by Direct Transfer and Migration in YPO4.” Journal of the Electrochemical Society, 147,2375 (2000).
    [52] K. Sohn, Y. Choi and H. Park, “Photoluminescence Behavior of Tb3+-Activated YBO3 Phosphors. “ Journal of the Electrochemical Society, 147,1988 (2000).
    [53] L. Wang, N. Liao, L. Shi, H. Jia, P. Du, Z. Xi and D. Jin,”Study on the Photoluminescence Properties of Electrodeposited Y2O3:Tb3+ Thin-Film Phosphor.” Electrochemical and solid-state letters, 13(6),E7-E9 (2010).
    [54] Shannon, R.,”Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.”International Union of Crystallography, 32(5), 751-767 (1976).
    [55] A. A. Kaminski, “Laser Crystals, Their Physics and Properties. “Springer Series in Optical Science, 14 (1990).
    [56] B. R. Judd, “Optical absorption intensities of rare-earth ions.” Physical Review,127(3),750-761 (1962).
    [57] G. S. Ofelt,” Intensities of crystal spectra of rare-earth ions.” The Journal of Chemical Physics, 37,511 (1962).
    [58] S. Polizzi,M. Battagliarin,M. Bettinelli, ”Investigation on lanthanide-doped Y2O3 nanopowders obtain
    ed by wet chemical synthesis.” Journal of material chemistry, 12(3),742-747 (2002).
    [59] L. Yu, D. Li, M. Yue, J. Yao and S. Lu, “Dependence of morphology and photoluminescent properties of GdPO4: Eu3+ nanostructures on synthesis condition.” Chemical Physics, 326(2-3),478-482 (2006).
    [60] U. Rambabu and S. Buddhudu,”Optical properties of LnPO4: Eu3+ (Ln= Y, La and Gd) powder phosphors.”Optical Materials, 17(3), 401-408 (2001).
    [61] Y. Chang, F. Huang, Y. Tsai and L. Teoh,”Synthesis and photoluminescent properties of YVO4: Eu3+ nano-crystal phosphor prepared by Pechini process” Journal of Luminescence, 129, 1181-1185 (2009).
    [62] F. Vetrone,V. Mahalingam and J. Capobianco, “Near-Infrared-to-Blue Upconversion in Colloidal BaYF5: Tm3+, Yb3+ Nanocrystals” Chem. Mater, 21(9), 1847-1851 (2009).
    [63] J. Mendez-Ramos, J. Velazquez and A. Yanes, “Up-conversion in nanostructured Yb3+/Tm3+ co-doped sol-gel derived SiO2-LaF3 transparent glass-ceramics” physica status solidi (a), 205 (2), 330-334 (2007).
    [64] J. Zhang, D. He, Z. Duan, L. Zhang, S. Dai and L. Hu, “Mechanisms and concentrations dependence of up-conversion luminescence in Tm3+/Yb3+ codoped oxyfluoride glass-ceramics” Physics Letters A, 337 (4-6), 480-486 (2005).
    [65] D. Shi, Q. Zhang, G. Yang, C. Zhao, Z. Yang and Z. Jiang, “Frequency upconversion luminescence in Tm3+/Yb3+-and Ho3+/Yb3+-codoped Ga2O3-GeO2-Bi2O3-PbO glasses.” Journal of Alloys and Compounds, 466 (1-2),373-376 (2008).
    [66] X. Chen, Z.Song, J. Wu, N. Sawanoboi, M. Ohtsuka, Y. Li, J. Zhou, C. Wang, J. Liu and Q. Tian, “Ultraviolet and visible upconversion luminescence of Tm(0.1) Yb (5): FOV oxyfluoride nanophase vitroceramics” Science in China Series G: Physics Mechanics and Astronomy, 51 (12), 1868-1876 (2008).
    [67] C. Cao, W. Qin and J. Zhang, “Study on up-conversion emissions of Yb3+/Tm3+ co-doped GdF3 and NaGdF4” Optics Communications, 283 (4), 547-550 (2010).
    [68] E. Nakazawa and S. Shionoya, “Cooperative Luminescence in YbPO4”Physical Review Letters, 25 (25), 1710-1712 (1970).
    [69] W. Yen, S. Shionoya and H. Yamamoto, “ Phosphor handbook”, CRC Press LLC, New York, U.S.A,644-646 (1999)
    [70] P. Paulose, G. Jose, V. Thomas, N. Unnikrishnan and M. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass “, Journal of Physics and Chemistry of Solids, 64, 841 (2003).
    [71] G. Stringfellow and M. Craford, “High brightness light emitting diodes” San Diego, Academic Press, 250 (1997).
    [72] F. Zhang, L. An, X. Liu, G. Zhou, X. Yuan and S. Wang, “Upconversion Luminescence in γ-AlON: Yb3+, Tm3+ Ceramic Phosphors” Journal of the American Ceramic Society , 92 (8), 1888-1890 (2009).

    下載圖示 校內:2020-06-22公開
    校外:2020-06-22公開
    QR CODE