| 研究生: |
黃偉禎 Huang, Wei-Chen |
|---|---|
| 論文名稱: |
利用共扼匹配之植入式生醫遙測系統雙頻低雜訊放大器及混波器 Dual band LNA/Mixer using conjugate matching for implantable biotelemetry |
| 指導教授: |
羅錦興
Luo, Ching-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 生醫 、混波器 、低雜訊放大器 、共扼匹配 、雙頻 |
| 外文關鍵詞: | Conjugate matching, Biotelemetry, Mixer, LNA, Dual band |
| 相關次數: | 點閱:82 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文研究中,主要討論雙頻帶 2.4GHz與 5.2GHz的低雜訊放大器與混頻器,運用在植入式生物晶片上;這個射頻接收前端電路,內容為低雜訊放大器的輸出端和混波器的輸入端,以共扼匹配的方式整合在單一晶片,並操作在雙頻 2.4GHz與 5.2GHz。
此射頻前端電路單一整合晶片中,在 2.4GHz,功率增益為 2.2dB,雜訊指數為 15.5dB,輸入 1dB功率壓縮點為 -14.4dBm,輸入三階截斷點為 -0.5dBm,及在 5.2GHz,功率增益為 5.6dB,雜訊指數為 10.8dB,輸入 1dB功率壓縮點為 -15.5dBm,輸入三階截斷點為 -6dBm,總功率消耗為 8.28mW。
為了達成單一晶片和系統單晶片的設計目標,此前端電路輸入端採用晶片元件做為匹配的設計,以便日後和其他電路整合。在2.4GHz與5.2GHz的S11大於 10dB。射頻接收器前端電路的工作頻段,可經由外部本地震盪器的頻率切換,達到輸出 400MHz的應用。
此晶片以台積電 CMOS 0.18-μm 的製程實現,並完成量測和模擬比較討論。
This Thesis presents a fully integrated 2.4/5.2-GHz dual-band low-noise amplifier (LNA) / mixer for implantable biotelemetry application. By using conjugation matching, this front-end receiver circuit integrates LNA output and mixer input for single chip at the 2.4GHz and 5.2GHz frequency band. The front-end circuit exhibits a 2.2dB gain, a 15.5dB noise figure, IP1dB of -14.4dBm, and IIP3 of -0.5dBm at the 2.4GHz frequency band. The front-end circuit exhibits a 5.6dB gain, a 10.8dB noise figure, IP1dB of -15.5dBm and IIP3 of -6dBm at the 5.2GHz frequency band. This circuit exhibits a power consumption of 8.28mW from a 1.8-V supply. To achieve single chip design target, this chip input was designed without any off-chip matching component. The circuit exhibits S11 of more than 10dB at the 2.4GHz and 5.2GHz frequency. The front-end circuit was designed for operation frequency. By switching local oscillator (LO) frequency, we can achieve an output application at the 400MHz frequency. The chip has fabricated in a TSMC 0.18-μm CMOS technology. Moreover, the measurement and comparison with simulation had been done.
[1]M. Zargari, M. Terrovitis, S.H.M. Jen, B.J. Kaczynski, L. MeeLan, M.P. Mack, S.S. Mehta, S. Mendis, K. Onodera, H. Samavati, W.W. Si, K. Singh, A. Tabatabaei, D. Weber, D.K. Su, B.A. Wooley, ”A Single- Chip Dual-Band Tri-Mode CMOS Transceiver for IEEE 802.11a/b/g WLAN,” IEEE J. Solid-State Circuits, Vol.39, pp.2239- 2249, Dec. 2004.
[2]M. Zannoth, T. Ruhlicke, B. U. Klepser,”A Highly Integrated Dual-Band Multimode Wireless LAN Transceiver,” IEEE J. Solid-State Circuits, Vol. 39, pp. 1191 - 1195, Jul. 2004.
[3]Adiseno; M. Ismail, H. Olsson, ”A Wide-Band RF Front-End for Multiband Multistandard High-Linearity Low-IF Wireless Receivers,” IEEE J. Solid-State Circuits, Vol.37,pp.1162-1168, Sep. 2002.
[4]Christina F. Jou, Kuo-Hua Cheng, Wei-Cheng Lien, Chun-Hsien Wu, and Chin-Hsien Yen, “Design of a Concurrent Dual-Band Receiver Front-End in 0.18um CMOS for WLANs IEEE 802.11a/b/g Applications,” IEEE Transaction on Microwave Theory and Techniques Mini-Special Issue on APMC 2004, New Delhi, India, Dec. 15-18, 2004.
[5]Zhenbiao Li, Richard Quintal, and Kenneth K. O, “A Dual-Band CMOS Front-End With Two Gain Modes for Wireless LAN Applications,” IEEE J. Solid-State Circuits, Vol. 39, No. 11, Nov. 2004.
[6]C.C. Hou, C.C. Chang, and C.K. Wang, “A Dual-band IEEE 802.11a/b/g Receiver Front-end Using Half-IF and Dual-Conversion,” IEEE Asia-Pacific Conference on Advanced System Integrated Circuits(AP-ASIC2004), Aug. 4-5. 2004.
[7]C.M. Hsu, C.M. Lee, T.C. Yo, C.H. Luo, “The Low Power MICS band biotelemetry architecture and its LNA design for implantanble applications,” IEEE Asian Solid-State Circuits Conference, Hangzhou, China, pp. 435-438, Nov. 2006.
[8]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge, 1998.
[9]T. Cho, E. Dukatz, M. Mack, D. MacNally, M. Marringa, S. Mehta, C. Nilson, L. Plouvier, and S. Rabii, “A Single-Chip CMOS Direct-Conversion Transceiver for 900MHz Spread-Spectrum Digital Cordless Phones,” Digest of Technical Papers, ISSCC, pp. 228-229, Feb. 1999.
[10]P. J. Chang, A. Rofougaran, and A. A. Abidi, “A CMOS Channel-Select Filter for a Direct-Conversion Wireless Receiver,” Digest of Technical Papers, Symposium on VLSI Circuits, Honolulu, HI. pp. 62-63, Jun. 1996.
[11]T. Cho, G. Chien, F. Britanti, and P.R. Gray, “A Power-Optimized CMOS Baseband Channel Filter and ADC for Cordless Application,” Digest of Technical Papers, Symposium on VLSI Circuits, Honolulu, HI. Pp. 64-65, Jun. 1996.
[12]D. K. Weaver. “A Third Method of Generation and Detection of Single-Sideband Signal,” Proc. IRE, Vol. 44, pp. 1703-1705, Dec. 1956.
[13]M. Banu, H .Wang, M. Seidel, M. Tarsia, W. Fischer, J. Glas, A. Dec, and V. Boccuzzi, “A BiCMOS Double-Low-IF Receiver for GSM,” Digest of Technical Papers, IEEE Custom Integrated Circuits Conference, pp. 521-524, May 1997.
[14]R. Hartley, Modulation system, U.S. Patent 1666206, Aug. 1928.
[15]D. K. Weaver, Jr., “A third method of generation and detection of single-sideband signals,” Proc. IRE, pp. 1703-1705, Jun. 1956.
[16]B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
[17]Derek K. Shaeffer, and Thomas H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,” IEEE Jouranl of Solid-State Cirecuit, Vol. 32, No. 5, pp. 745, May 1997.
[18]Paul R. Gray, Paul J. Hurst, Stephen H. Lewis ,and Robert G. Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley & Sons, Inc., Fourth Edition, 2001.
[19]A. ven der Ziel, Noise in solid State Devices and Circuit, New York: Wiley, 1986.
[20]H. Hashemi, A. Hajimiri, “Concurrent Multiband Low-Noise Amplifiers-Theory, Design, and Applicatons,” IEEE Tran. On Microwave Theory and Techniques, Vol. 50, No. 1, pp. 288-301, Jan. 2002.
[21]M. Ben Amor, A. Fakhfakh, H. Mnif, M. Loulou, “Dual Band CMOS LNA Design With Current Reuse Topology,” in DTIS 2006, pp. 57 - 61
[22]Pietro Andreani, and Henrik Sjöland, “Noise Optimization of an Inductively Degenerated CMOS Low Noise Amplifier,” IEEE Tran. On Circuits and Systems—II: Analog and Digital Signal Processing, Vol. 48, No. 9, Sep. 2001.
[23]Q. Huang, P. Orsatti, F. Piazza, “GSM transceiver front-end circuits in 0.25-μm CMOS,” IEEE J. Solid-State Circuits, Vol. 34, No. 3, pp. 292-303, Mar. 1999.
[24]T. Soorapanth and T.H. Lee, “RF linearity of short-channel MOSFETs,” Proceedings of 1st international workshop on Design of mixed-mode integrated circuits and applications, Cancun, Mexico, pp. 81-84, 1997.
[25]K. L. Sullivan, B. A. Xavier, and W. H. Ku, “Low Voltage Performance of a Microwave CMOS Gilbert Cell Mixer,” IEEE J. Solid-State Circuits, Vol. 32, pp. 1151-1156, Jul. 1997.
[26]R. Ludwig and P. Bretchko, RF Circuit Design: Theory and Applications, Prentice-Hall, Inc., 2000.
[27]H. Hashemi, A. Hajimiri, “Concurrent Multiband Low-Noise Amplifier-Theory, Design, and Applications,” IEEE Tran. On Microwave Theory and Techniques, Vol. 50, No. 1, pp. 288-301, Jan 2002.
[28]M. Ben Amor, A. Fakhfakh, H. Mnif, M. Loulou, “Dual Band CMOS LNA Design With Current Reuse Topology,” in DTIS, pp. 57 – 61, 2006.
[29]H. Hashemi and A. Hajimiri, “Concurrent Multi-band Low-Noise Amplifier-Theory, Design, and Ap-plications,” IEEE Trans. On Microwave Theory Tech., vol.50, no.1, Jan. 2001.
[30]Liang-Hung Lu, Hsieh-Hung Hsieh, and Yu-Shun Wang, “A Compact 2.4/5.2-GHz CMOS Dual-Band Low-Noise Amplifier,” IEEE Microwave and Wireless Components Letters, Vol. 15, No. 10, Oct. 2005