| 研究生: |
曾俊堯 Tseng, Chun-Yao |
|---|---|
| 論文名稱: |
以超音波噴霧熱裂解法製備氧化鉻銅於高穩定性鈣鈦礦太陽能電池之研究 Investigation of Ultrasonic Spray Pyrolysis Deposition Based Copper-Chromium Oxide Hole Transport Layer for High Stability Perovskite Solar Cells |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 鈣鈦礦太陽能電池 、超音波噴霧熱裂解沉積法 、氧化鉻銅 |
| 外文關鍵詞: | Perovskite solar cell, Ultrasonic spray pyrolysis deposition, Copper chromium oxide |
| 相關次數: | 點閱:80 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在近年的研究之中,有機鈣鈦礦太陽能電池雖然發展飛速,但其穩定性由於鈣鈦礦層對水、氧敏感的特性以及其他也容易受影響的有機材料而一直是人們研究的主軸。在此論文裡,我們採取超音波噴霧熱裂解沉積法製備氧化鉻銅p型半導體薄膜取代被廣泛使用但卻被證實擁有吸水性和酸性對鈣鈦礦不利的PEDOT:PSS。首先,氧化鉻銅的價帶頂與鈣鈦礦層MAPbI3匹配,能夠有效的輔助載子的分離與運輸,最佳化元件的開路電壓,且其具有大約2.9電子伏特的寬能隙,不僅可以阻擋來自主動層的電子即反向電流,對應的吸收波長在紫光區也有效的避免鈣鈦礦層因吸收紫外光而造成的降解,而氧化鉻銅身為金屬氧化層也有著比其他有機材料更優越的穩定性和可靠度。此外,在這篇論文中我們使用了超音波噴霧熱裂解沉積法沉積氧化鉻銅薄膜,此方法具有快速、製程簡便和高均勻性等優點,可以製作出緻密且可自由調變厚度的高品質半導體薄膜,且在非真空環境下工作,應用在鈣鈦礦太陽能電池的製程內不僅更進一步降低了成本,也增加了優勢。最後我們以超音波噴霧熱裂解法沉積氧化鉻銅薄膜作為電洞傳輸層完成高穩定性的鈣鈦礦太陽能電池。
In recent years, organic perovskite solar cells have developed rapidly, but their stability has been the key point of research due to the perovskite layer and other organic materials that are susceptible for moisture and oxygen. In this thesis, we apply ultrasonic spray pyrolysis deposition method to prepare p-type copper-chromium oxide semiconductor film to replace PEDOT:PSS which is widely used but has been proven that its acidity and hygroscopicity is detrimental to perovskite.
First, the valence band top of the chromium oxide copper is matched with the perovskite layer, MAPbI3, which effectively assist the separation and transportation of the carrier and optimize the open circuit voltage of the component. Thus, its wide energy gap about 2.9 eV can not only block electrons from the active layer as known as reverse currents, and the corresponding absorption wavelength is also effective in the violet region to avoid degradation of the perovskite layer due to absorption of ultraviolet light, much more CuCrO2 as metal oxide is also superior to other organic materials with stability and reliability. In addition, in this paper, we used ultrasonic spray pyrolysis deposition to deposit CuCrO2 film. This method has the advantages of fast, simple process and high uniformity, then can produce high quality, compact and adjustable thickness thin film in non-vacuum ambient environment. Therefore, it is suitable for applying to the process of metal oxide layer in perovskite solar cells to further reduce costs and enhance performance. Finally, we utilize ultrasonic spray pyrolysis method to deposit copper-chromium oxide film as the hole transport layer to complete high stability perovskite solar cells.
[1] D. M. Chapin, C. S. Fuller and G. L. Pearson, "A New Silicon P-N Junction Photocell For Converting Solar Radiation Into Electrical Power," JOURNAL OF APPLIED PHYSICS, vol. 25, no. 5 , pp. 676-677, 1954.
[2] W. A. Badwy, S. A. Elmeniawy, S. A.Hefez, "Improvement of the photovoltaic characteristics of industrially fabricated solar cells by etching of the Si surface," J. Sol. Energy Eng, p. 041007, Aug 2015.
[3] W. A. Badwy, "A review on solar cells from Si-single crystals to porous materials and quantum dots," J Adv Res., vol. 6, no. 2, pp. 123-132, Mar 2015.
[4] F. Dimroth, "Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency," Prog. Photovolt: Res. Appl., vol. 22, no. 3, pp. 227-282, Mar 2014.
[5] National Renewable Energy Laboratory, "Best Research-Cell Efficiency Chart," Apr 2019. [Online]. Available: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf.
[6] N. A. Lee, G. E. Gilligan, J. Rochford, "Solar Energy Conversion," in Green Chemistry, 2018, pp. 881-918.
[7] D. Weber, "CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure," Z. Naturforsch, vol. 33, no. 12, pp. 1443-1445, Dec 1978.
[8] D. Weber, "CH3NH3SnBrxl3 x (x = 0-3), ein Sn(II)-System mit kubischer Perowskitstruktur," Z. Naturforsch, vol. 33b, pp. 862-865, Aug 1978.
[9] D. B. Mizti, "Organic−Inorganic Perovskites Containing Trivalent Metal Halide Layers: The Templating Influence of the Organic Cation Layer," Inorg. Chem., vol. 39, no. 26, pp. 6107-6113, Dec 2000.
[10] D. B. Mizti, "Templating and structural engineering in organic-inorganic perovskites," J. Chem. Soc., Dalton Trans, no. 1, pp. 1-12, 2001.
[11] L. Etgar, P. Gao, Z. S. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, M. Gratzel, "Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells," J. Am. Chem. Soc, vol. 134, no. 42, pp. 17396-17399, Oct 2012.
[12] M. M. Lee, J. Teuscher, T. N. Murakami. H. J. Saith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites," Science, vol. 338, no. 6107, pp. 643-647, Nov 2012.
[13] J. B. You, Z. R. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. R. Lu, Y. S. Liu, H. P. Zhou, Y. Yang, "Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility," ACS Nano, vol. 8, no. 2, pp. 1674-1680, Feb 2014.
[14] J. H. Heo, H. J. Han, D. S. Kim, T. K. Ahn, S. H. Im, "Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency," Energy Eviron. Sci., vol. 8, no. 5, pp. 1602-1608, 2015.
[15] T. C. Tsai, H. C. Chang, C. H. Chen, Y. C. Huang, W. T. Whang, "A facile dedoping approach for effectively tuning thermoelectricity and acidity of PEDOT:PSS films," ORGANIC ELECTRONICS, vol. 15, no. 3, pp. 641-645, Mar 2014.
[16] E. Voroshazi, B. Verreet, A. Buri, R. Muller, D. D. Nuzzo, P. Heremans, "Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells," ORGANIC ELECTRONICS, vol. 12, no. 5, pp. 736-744, May 2011.
[17] Q. Y. Xi, G. Gao, H. Zhou, Y. X. Zhao, C. Q. Wu, L. D. Wang, P. Guo, J. W. Xu, "Highly efficient inverted solar cells based on perovskite grown nanostructures mediated by CuSCN," NANOSCALE, vol. 9, no. 18, pp. 6136-6144, May 2017.
[18] J. B. You, L. Meng. T. B. Song, Y. Yang, "Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers," NNANO, vol. 11, no. 1, p. 75, Jan 2016.
[19] S. S. Chu, R. Zhao, R. Liu, Y. H. Gao, X. W. Wang, C. Liu, J. Chen, H. Zhou, "Atomic-layer-deposited ultra-thin VOx film as a hole transport layer for perovskite solar cells," Semicond. Sci. Technol., vol. 33, no. 11, p. 115016, Oct 2018.
[20] C. T. Zuo, L. M. Ding, "Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells," Small, vol. 11, no. 41, pp. 5528-5532, Nov 2015.
[21] P. L. Qin, Q. He, G. Li, G. J. Fang, "High-Performance Rigid and Flexible Perovskite Solar Cells with Low-Temperature Solution-Processable Binary Metal Oxide Hole-Transporting Materials," Sol. RRL, vol. 1, no. 8, p. 1700058, Aug 2017.
[22] P. L. Qin, Q. He, G. Li, G. J. Fang, "Metal ions diffusion at heterojunction chromium Oxide/CH3NH3PbI3 interface on the stability of perovskite solar cells," Surfaces And Interfaces, vol. 10, pp. 93-99, Mar 2018.
[23] W. A. Dunlap-Shohl, J. Wang, Y. Y. Yan, J. W. P. Hsu, "Room-temperature fabrication of a delafossite CuCrO2 hole transport layer for perovskite solar cells," J. Mater. Chem. A,, vol. 6, no. 2, pp. 469-477, Jan 2018.
[24] H. Zhang, H. Wang, W. Chen, S. Yang, A. K. Y. Jen, "Low‐Temperature Solution‐Processed CuCrO2 Hole‐Transporting Layer for Efficient and Photostable Perovskite Solar Cells," Adv. Energy Mater., vol. 8, no. 13, p. 1702762, May 2018.
[25] S. Jeong, S. Seo, H. Shin, "RSC Adv.," P-Type CuCrO2 particulate films as the hole transporting layer for CH3NH3PbI3 perovskite solar cells, vol. 8, no. 49, pp. 27956-27962, 2018.
[26] A. Albaalbaky, Y. Kvashnin, D. Ledue, R.Patte, R. Fresard, "Magnetoelectric properties of multiferroic CuCrO2 studied by means of ab initio calculations and Monte Carlo simulations," Phys. Rev. B, vol. 96, no. 6, p. 064431, Aug 2017.
[27] Z. H. Bakr, Q. Wail, A. Fakharuddin, L. Schmidt-Mende, T. M. Brown, R. Jose, "Advances in hole transport materials engineering for stable and efficient perovskite solar cells," NANO ENERGY, vol. 34, pp. 271-305, Apr 2017.
[28] J. B. Sun, P. Sun, D. L. Zhang, J. Xu, X. S. Liang, F. M. Liu, G. Lu, "Growth of SnO2 nanowire arrays by ultrasonic spray pyrolysis and their gas sensing performance," RSC Adv., vol. 4, no. 82, pp. 43429-43435, 2014.
[29] G. Korotcenkov, B. K. Cho, "Spray pyrolysis deposition of undoped SnO2 and In2O3 films and their structural properties," Progress In Crystal Growth And Characterization Of Materials, vol. 63, no. 1, pp. 1-47, Feb 2017.
[30] Nick84, "Solar irradiance spectrum above atmosphere and at surface," [Online]. Available: https://en.wikipedia.org/wiki/Solar_irradiance#/media/File:Solar_spectrum_en.svg.
[31] J. Jeong, "PHOTOVOLTAICS: Measuring the 'Sun'," LaserFocusWorld, May 2009. [Online]. Available: https://www.laserfocusworld.com/lasers-sources/article/16566681/photovoltaics-measuring-the-sun.
[32] J. P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. J. Jacobsson, M. Gratzel, A. Hagfeldt, "The rapid evolution of highly efficient perovskite solar cells," Energy Environ. Sci., vol. 10, no. 3, pp. 710-727, Mar 2017.
[33] H. S. Jung, N. G. Park, "Perovskite Solar Cells: From Materials to Devices," Small, vol. 11, no. 1, pp. 10-25, Jan 2015.
[34] N. G. Park, "Perovskite solar cells: an emerging photovoltaic technology," Materials Today, vol. 18, no. 2, pp. 65-72, Mar 2015.
[35] S. D. Stranks, V. M.Burlakov, T. Leijtens, J. M. Ball, A. Goriely, H. J. Snaith, "Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States," Phys. Rev. Applied, vol. 2, no. 3, p. 034007, Sep 2014.
[36] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. W. Wang, S D. Stranks, H. J. Snaith, R. J. Nicholas, "Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites," NATURE PHYSICS, vol. 11, no. 7, pp. 582-U94, Jul 2015.
[37] E. L. Lim, C. C. Yap, M. H. H. Jumali, M. A. M. Teridi, C. H. Teh, "A Mini Review: Can Graphene Be a Novel Material for Perovskite Solar Cell Applications?," NANO-MICRO LETTERS, vol. 10, no. 2, p. 27, Apr 2018.
[38] S. M. Sze, M. K. Lee, Semiconductor Devices: Physics and Technology, 3rd Edition, John Wiley & Sons, 1985.
[39] Y. G. Tao, A. Rohatgi, High‐Efficiency Front Junction n‐Type Crystalline Silicon Solar Cells, Nanostructured Solar Cells, 2017.
[40] D. Bartesaghi, I. D. Perez, J. Kniepert, S. Roland, M. Turbiez, D. Neher, L. J. A. Loster, "Competition between recombination and extraction of free charges determines the fill factor of organic solar cells," NATURE COMMUNICATIONS, vol. 6, p. 7083, May 2015.
[41] M. G. Helander, M. T. Greiner, Z. B. Wang, W. M. Tang, Z. H. Lu, "Work function of fluorine doped tin oxide," JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, vol. 29, no. 1, p. 011019, Jan 2011.
[42] J. Crepelliere, P, L, Popa, N. Bahlawane, R. Leturcq, F. Werner, S.Siebentritt, D. Lenoble, "Transparent conductive CuCrO2 thin films deposited by pulsed injection metal organic chemical vapor deposition: up-scalable process technology for an improved transparency/conductivity trade-off," J. Mater. Chem. C, vol. 4, no. 19, pp. 4278-4287, 2016.
[43] D. H. Xiong, Z. Xu, X. W. Zeng, W. J. Zhang, W. Chen, X. B. Xu, M. K. Wang, Y. B. Cheng, "Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells," J. Mater. Chem., vol. 22, no. 47, pp. 24760-24768, 2012.
[44] J. Lee, "Electron transport mechanism of bathocuproine exciton blocking layer in organic photovoltaics," Phys. Chem. Chem. Phys., vol. 18, no. 7, pp. 5444-5452, Feb 2016.
[45] A. Olah, H. Hillborg, G. H. Vancso, "Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification," APPLIED SURFACE SCIENCE, vol. 239, no. 3-4, pp. 410-423, Jan 2005.
[46] Y. S. Lee, D. Chua, R. E. Brandt, S. C. Siah, J. V. Li, J. P. Mailoa, S. W. Lee, R. G. Gordon, T. Buonassisi, "Atomic Layer Deposited Gallium Oxide Buffer Layer Enables 1.2 V Open-Circuit Voltage in Cuprous Oxide Solar Cells," Adv.Mater., vol. 26, no. 27, p. 4704, Jul 2014.
[47] Q. Jiang, Y. Zhao, X. W. Zhang, X. L. Yang, Y. Chen, Z. M. Chu, Q. F. Ye, X. X. Li, Z. G. Yin, J. B. You, "Surface passivation of perovskite film for efficient solar cells," Nature Photonics, vol. 13, no. 7, pp. 460-469, Jul 2019.
校內:2024-07-13公開