簡易檢索 / 詳目顯示

研究生: 吳春香
Wu, Chun-Shiang
論文名稱: 探討退火條件對Gd2O3/Si異質接面整流特性的影響以應用於電阻式記憶體
The Effect of Annealing Conditions on the Rectification of Gd2O3/Si Heterojunction for Resistive Random Access Memory Application
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 56
中文關鍵詞: 三氧化二釓(Gd2O3)薄膜整流特性電阻轉換特性
外文關鍵詞: Gd2O3 thin film, rectification, resistivity switching
相關次數: 點閱:66下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用射頻磁控濺鍍法在Si基板上沉積Gd2O3薄膜並利用電子束蒸鍍法鍍製不同金屬做為上電極,形成金屬-介電-半導體(MIS)結構。本實驗分成三部分,第一部分探討Gd2O3薄膜在不同退火溫度及氣氛下的物理特性。由實驗可知,與空氣退火相比,薄膜在氮氫混合氣氛下退火能夠產生較多氧空缺,且由XPS可驗證隨著退火溫度升高,非晶格氧的特徵峰訊號增強並往高束縛能偏移。本實驗中,Gd2O3薄膜具有n型半導性,並且在氮氫退火800oC時載子濃度最高。TEM橫截面影像發現Al/Gd2O3與Gd2O3/Si界面皆有一層氧化層,且在氮氫退火後Gd2O3/Si界面層厚度會明顯增加。
    第二部分探討的是不同退火溫度對Al/Gd2O3/Si異質接面整流特性的影響。根據實驗結果,Al/Gd2O3/Si在經過氮氫退火(600-900oC)之後皆具有整流的效果,然而經過理想因子的計算過後,得知氮氫800oC下的接面性質較符合理想二極體,元件的整流的特性由p-n接面主導。另外,探討不同上電極(Al、Ti、Cr及Au)對電性的影響時,可以發現功函數小的金屬材料具有較大的漏電流,且皆具有整流特性,並且除了Ti上電極,其他金屬的整流特性都由p-n接面所主導。
    最後將探討Metal/Gd2O3/Si元件的電阻轉換特性,由實驗結果得知,經過氮氫800oC退火處理後,元件具有較佳的電阻轉換特性,足夠的氧空缺使得薄膜更容易形成導電路徑,使得所需要的操作電壓降低,並且開關比在-0.5V下可達到104。同樣選擇上電極功函數小者,界面處形成的能障較小,可在相對較小的電壓下作電阻的切換。

    The purpose in our study is to discuss the characteristic of rectification and resistive switching of a self-rectifying device in RRAM. In this study, the Gd2O3 thin films are deposited on Si substrates by RF magnetron sputtering and various metal top electrodes are fabricated by E-beam evaporator to form metal-insulator-semiconductor structures. According to the result, more oxygen vacancies in the n type semiconducting Gd2O3 thin film are produced under N2-H2 annealing. The rectifying ratio of Al/Gd2O3/Si device with 800oC annealing in N2-H2 can reach 6 orders and the resistive switching property has the lowest Set voltage as well as ON/OFF window with 4 orders. Therefore, the Al/Gd2O3/Si device is considered as one of the potential structures in self-rectifying RRAM.

    摘要 I SUMMARY III 誌謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 理論基礎 5 2-1 半導體接面特性 5 2-1-1 蕭基接面 5 2-1-2 半導體p-n接面 7 2-2 電阻式記憶體 9 2-3 電阻轉換機制 11 2-4 文獻回顧 13 2-4-1 三氧化二釓電阻式記憶體回顧 13 2-4-2 整流特性研究回顧 17 第三章 實驗步驟及方法 20 3-1 實驗材料 20 3-2 實驗設備 20 3-2-1 射頻磁控濺鍍系統 20 3-2-2 氣氛退火系統 21 3-2-3 電子束蒸鍍機 21 3-3 實驗流程 22 3-4 分析儀器 24 3-4-1 低掠角X光薄膜繞射儀(GIA-XRD) 24 3-4-2 場發射掃描式電子顯微鏡(FE-SEM) 25 3-4-3 X光光電子能譜儀(XPS) 25 3-4-4 紫外光光電子能譜儀(UPS) 25 3-4-5 穿透式電子顯微鏡(TEM) 26 3-4-6 紫外線/可見光分光光譜儀(UV-VIS spectrometers) 26 3-4-7 半導體參數分析儀 27 第四章 實驗結果與討論 28 4-1 不同退火條件下Gd2O3薄膜之物性分析 28 4-1-1 SEM表面形貌分析 28 4-1-2 XRD薄膜結晶相分析 29 4-1-3 TEM微結構分析 31 4-1-4 XPS薄膜表面化學鍵結分析 34 4-1-5 能帶分析 38 4-2 Metal/Gd2O3/Si元件之電特性分析 41 4-2-1 Al/Gd2O3/Si於不同退火氣氛下之整流特性分析 41 4-2-2 Al/Gd2O3/Si於不同氮氫退火溫度下之整流特性分析 42 4-2-3 不同上電極對Metal/Gd2O3/Si結構之整流特性影響 45 4-3 電阻轉換特性 48 4-3-1 不同退火氣氛對Al/Gd2O3/Si元件之電阻轉換特性影響 48 4-3-2 不同氮氫退火溫度對Al/Gd2O3/Si元件之電阻轉換特性影響 49 4-3-3 不同上電極對Metal/Gd2O3/Si元件之電阻轉換特性影響 51 第五章 結論 52 參考文獻 53

    [1] T. M. Pan, and C. H. Lu, “Switching Behavior in Rare-Earth Films Fabricated in Full Room Temperature,” IEEE Transaction on Electron Devices, 59, 956–961, 2012.
    [2] V. S. S. Srinivasan, S. Chopra, P. Karkare, P. Bafna, S. Lashkare, P. Kumbhare, Y. Kim, S. Srinivasan, S. Kuppurao, S. Lodha, and U. Ganguly, “Punchthrough-Diode-Based Bipolar RRAM Selector by Si Epitaxy,” IEEE Electron Device Letters, 33, 1396–1398, 2012.
    [3] M. Y. Song, Y. Seo, Y. S. Kim, H. D. Kim, H. M. An, B. H. Park, Y. M. Sung, and T. G. Kim, “Realization of One-Diode-Type Resistive-Switching Memory with Cr-SrTiO3 Film,” Applied Physics Express, 5, 091202, 2012.
    [4] 左青云、劉明、龍世兵、王琴、胡媛、劉琦、張森、王豔、李穎弢,〈阻變記憶體及其集成技術研究進展〉,《微電子學》第39期,頁546–551,2009。
    [5] T. M. Pan, and C. H. Lu, “Forming-Free Resistive Switching Behavior in Nd2O3, Dy2O3, and Er2O3 Films Fabricated in Full Room Temperature,” Applied Physics Letters, 99, 113509, 2011.
    [6] K. C. Liu, W. H. Tzeng, K. M. Chang, Y. C. Chan, and C. C. Kuo, “Bipolar Resistive Switching Effect in Gd2O3 Films for Transparent Memory Application,” Microelectronic Engineering, 88, 1586–1589, 2011.
    [7] K. W. Zhang, S. B. Long, Q. Liu, H. B. Lu, Y. T. Li, Y. Wang, W. T. Lian, M. Wang, S. Zhang, and M. Liu, “Progress in Rectifying-Based RRAM Passive Crossbar Array,” SCIENCE CHINA Technological Sciences, 54, 811–818, 2011.
    [8] J. C. Wang, Y. R. Ye, J. S. Syu, P. R. Wu, C. I Wu, P. S. Wang, and J. H. Chang, “Low-Power and High-Reliability Gadolinium Oxide Resistive Switching Memory with Remote Ammonia Plasma Treatment,” Japanese Journal of Applied Physics, 52, 04CD07, 2013.
    [9] K. C. Liu, W. H. Tzeng, K. M. Chang, Y. C. Chan, C. C. Kuo, and C. W. Cheng, “The Resistive Switching Characteristics of a Ti/Gd2O3/Pt RRAM Device,” Microelectronics Reliability, 50, 670–673, 2010.
    [10] X. Cao, X. M. Li, X. D. Gao, W. D. Yu, and X. J. Liu et al., “Forming-Free Colossal Resistive Switching Effect in Rare-Earth-Oxide Gd2O3,” Journal of Applied Physics, 106, 073723, 2009.
    [11] J. C. Wang, D. Y. Jian, Y. R. Ye, L. C. Chang, and C. S. Lai, “Characteristics of Gadolinium Oxide Resistive Switching Memory with Pt-Al Alloy Top Electrode and Post-Metallization Annealing,” Journal of Physics D: Applied Physics, 46, 275103, 2013.
    [12] Y. H. Wu, D. J Wouters, P. Hendrickx, L. Zhang, Y. Y. Chen, L. Goux, A. Fantini, G. Groeseneken, and M. Jurczak, “On the Bipolar Resistive Switching Memory Using TiN/Hf/HfO2/Si MIS Structure,” IEEE Electron Device Letters, 34, 444–416, 2013.
    [13] S. Mitr, S. Chakraborty, and K. S. R. Menon, “Study of Anti-Clockwise Bipolar Resistive Switching in Ag/NiO/ITO Heterojunction Assembly,” Applied Physics A Materials Science and Processing, 115, 1173–1179, 2014.
    [14] K. L. Lin, T. H. Hou, J. Shieh, J. H. Lin, C. T. Chou, and Y. J. Lee, “Electrode Dependence of Filament Formation in HfO2 Rresistive-Switching Memory,” Journal of Applied Physics, 109, 084104, 2011.
    [15] K. Zheng, J. L. Zhao, X. W. Sun, V. Q. Vinh, K. S. Leck, R. Zhao, Y. G. Yeo, L. T. Law, and K. L. Teo, “Resistive Switching in a GaOx-NiOx p-n Heterojunction,” Applied Physics Letters, 101, 143110, 2012.
    [16] C. S. Peng, W. Y. Chang, Y. H. Lee, M. H. Lin, F. Chen, and M. J. Tsaic, “Improvement of Resistive Switching Stability of HfO2 Films with Al Doping by Atomic Layer Deposition,” Electrochemical and Solid-State Letters, 15, H88–H90, 2012.
    [17] J. W. Seo, S. J. Baik, S. J. Kang, Y. H. Hong, and J. H. Yang et al., “A ZnO Cross-Bar Array Resistive Random Access Memory Stacked with Heterostructure Diodes for Eliminating the Sneak Current Effect,” Applied Physics Letters, 9, 233505, 2011.
    [18] K. H. Kim, S. H. Jo, and S. Gaba et al., “Nanoscale Resistive Memory with Intrinsic Diode Characteristics and Long Endurance,” Applied Physics Letters, 96, 053106, 2010.
    [19] J. J. Huang, T. H. Hou, C. W. Hsu, Y. M. Tseng, W. H. Chang, W. Y. Jang, and C. H. Lin, “Flexible One Diode-One Resistor Crossbar Resistive-Switching Memory,” Japanese Journal of Applied Physics, 51, 04DD09, 2012.
    [20] C. Chen, F. Pan, Z.S. Wang, J. Yang, and F. Zeng, “Bipolar Resistive Switching with Self-Rectifying Effects in Al/ZnO/Si Structure,” Journal of Applied Physics, 111, 013702, 2012.
    [21] Q. Y. Zuo, S. B. Long, and S. Q. Yang et al., “ZrO2-Based Memory Cell with a Self-Rectifying Effect for Crossbar WORM Memory Application,” IEEE Electron Device Letters, 31, 344–346, 2010.
    [22] 施敏著,黃調元譯,《半導體元件物理與製作技術》。新竹:國立交通大學出版社,2002。
    [23] A. Sawa, “Resistive Switching in Transition Metal Oxides,” Materialstoday, 11, 28–36, 2008.
    [24] M. H. Tang, Z. P. Wang, J. C. Li, Z. Q. Zeng, X. L. Xu, G. Y. Wang, L. B. Zhang, Y. G. Xiao, S. B. Yang, B. Jiang, and J. He, “Bipolar and Unipolar Resistive Switching Behaviors of Sol-Gel-Derived SrTiO3 Thin Films with Different Compliance Currents,” Semiconductor Science Technology, 26, 075019, 2011.
    [25] Y. S. Wang, “Resistive-Switching Mechanism of Transparent Nonvolatile Memory Device Based on Gallium Zinc Oxide,” Phys. Status Solidi A, 209, 364–368, 2012.
    [26] J. J. Huang, C. W. Kuo, W. C. Chang, and T. H. Hou, “Transition of Stable Rectification to Resistive-Switching in Ti/TiO2/Pt Oxide Diode,” Applied Physics Letters, 96, 262901, 2010.
    [27] A. N. Banerjee, S. Kundoo, and K. K. Chattopadhyay, “Synthesis and Characterization of p-Type Transparent Conducting CuAlO2 Thin Film by DC Sputtering,” Thin Solid Films, 440, 5–10, 2003.
    [28] T. M. Pan, T. Y. Yu, and C. C. Wang, “High-k Nd2O3 and NdTiO3 Charge Trapping Layers for Nonvolatile Memory Metal-SiO2-High-k-SiO2-Silicon Devices,” Journal of The Electrochemical Society, 155, G218–G223, 2008.
    [29] R. Wirth, “Water in Minerals Detectable by Electron Energy-Loss Spectroscopy EELS,” Physics Chemical Minerals, 24, 561–568, 1997.
    [30] S. Gao, C. Song, C. Chen, F. Zeng, and F. Pan, “Dynamic Processes of Resistive Switching in Metallic Filament-Based Organic Memory Devices,” The Journal of Physical Chemistry C, 116, 17955–17959, 2012.
    [31] J. R. Waldrop, R. W. Grant, S. P. Kowalczyk, and E. A. Kraut, “Measurement of Semiconductor Heterojunction Band Discontinuities by Xray Photoemission Spectroscopy,” Journal of Vacuum Science and Technology A, 3, 835–841, 1985.
    [32] C. L. Kuo, R. C. Wang, J. L. Huang, C. P. Liu, C. K.Wang, S. P. Chang, W. H. Chu, C. H. Wang, and C. H. Tu, “The Synthesis and Electrical Characterization of Cu2O/Al:ZnO Radial p-n Junction Nanowire Arrays,” Nanotechnology, 20, 365603, 2009.
    [33] M. S. Jo, D. J. Seong, S. H. Kim, J. Y. Lee, W. T. Lee, J. B. Park, S. S. Park, S. J. Jung, J. H. Shin, D. S. Lee, and H. S. Hwang, “Novel Cross-Point Resistive Switching Memory with Self-Formed Schottky Barrier,” 2010 Symposium on VLSI Technology, Honolulu, Taiwan, 15–17 June, 2010.
    [34] W. T. H. Wu, and J. D. Hwang, “Enhancing the Responsivity of UV to Visible by Inserting a SiO2 Layer Between p-Si and i-ZnO For the Heterojunction Photodiode with p-Si/SiO2/i-ZnO/n-ZnO structure”, IEEE 2nd International Symposium on Next-Generation Electronics, Kaohsiung, Taiwan, 25–26 February, 2013.

    下載圖示 校內:2019-08-22公開
    校外:2021-01-01公開
    QR CODE