簡易檢索 / 詳目顯示

研究生: 彭冠穎
Peng, Kuan-Ying
論文名稱: 基於橢圓曲線密碼學之高效能數位簽章及驗證處理器
A High-Performance Digital Signature and Verification Processor Based on Elliptic Curve Cryptography
指導教授: 李昆忠
Lee, Kuen-Jong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 48
中文關鍵詞: 密碼學橢圓曲線密碼學橢圓曲線數位簽章演算法橢圓曲線點乘運算模算術運算FPGA實作
外文關鍵詞: cryptography, elliptic curve cryptography, elliptic curve digital signature algorithm, elliptic curve point multiplication, modular arithmetic, FPGA implementation
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個高效能的橢圓曲線數位簽章處理器,專為質數域下的橢圓曲線密碼學運算所優化。該處理器整合一個高基數的統一模運算單元,可在共享的資料通路中執行模數乘法、加法與減法運算,並搭配一個基於二元歐幾里得演算法的模反運算單元。為了加速橢圓曲線純量乘法,本設計採用Hamburg提出的Montgomery階梯演算法,並透過平行化資料留予明確的Montgomery表示轉換機制來提升效率。所有操作數皆以Montgomery形式進行處理,以確保算術一致性並降低額外開銷。UMAU採用基於基數八的進位儲存加法器結構,並整合優化的商數決定機制,以提升各種模運算的效能。整體架構已於Xilinx Virtex-7現場可程式化邏輯閘陣列上實作,實驗結果顯示本處理器相較於現有的橢圓曲線數位簽章處理器與橢圓曲線處理器設計具有更高的操作頻率、更低的執行延遲,以及更佳的面積時間效率。本設計提供一個緊湊且高效能的硬體解決方案,特別適用於嵌入式與資源受限的安全應用場景中。

    This paper presents a high-performance processor that implements the Elliptic Curve Digital Signature Algorithm (ECDSA) for Elliptic Curve Cryptography (ECC) over prime fields. The processor integrates a high-radix Unified Modular Arithmetic Unit (UMAU) that supports modular multiplication, addition, and subtraction within a shared datapath, and a modular inversion unit based on the Binary Euclidean Algorithm. The design utilizes Hamburg’s Montgomery Ladder algorithm to accelerate scalar multiplication through a parallelized dataflow and explicit management of Montgomery form conversions. All operands are processed in the Montgomery domain to maintain arithmetic consistency and reduce overhead. The UMAU employs a radix-8 CSA-based structure and an optimized quotient determination strategy to improve efficiency across all supported operations. The processor was implemented on an Xilinx Virtex-7 FPGA, and experimental results show that it achieves higher operating frequency, reduced execution latency, and better area-time efficiency compared to existing ECDSA and ECC designs. The proposed architecture offers a compact and high-performance hardware solution for cryptographic operations, making it well-suited for secure applications in embedded and resource-constrained environments.

    摘 要 i ABSTRACT ii CHAPTER 1 Introduction 1 CHAPTER 2 Background And Related Work 5 2.1 Elliptic Curve Cryptography 5 2.2 Montgomery Ladder 7 2.2.1 Ladder Setup 9 2.2.1 Ladder Finish 10 2.3 Montgomery Modular Multiplication 11 CHAPTER 3 Proposed Architecture and Design Principles 13 3.1 Overview of the Design Principles 13 3.2 Key Design Principles 13 CHAPTER 4 High-Radix UMAU 15 4.1 Modular Multiplication 15 4.2 Modular Addition and Modular Subtraction 20 4.3 High-Radix UMAU 22 CHAPTER 5 Proposed ECDSA Processor 25 CHAPTER 6 Experimental Results 30 CHAPTER 7 Conclusions 34 References 35

    [1] R. L. Rivest, A. Shamir, and L. Adleman, "A method for obtaining digital signatures and public-key cryptosystems," Commun. ACM, vol. 21, no. 2, pp. 120-126, 1978.
    [2] E. B. Barker, W. C. Barker, W. E. Burr, W. T. Polk, and M. E. Smid, Recommendation for Key Management, Part 1: General (revised), Gaithersburg, MD: NIST SP 800-57, 2007.
    [3] NIST, L. Chen, D. Moody, A. Regenscheid, and A. Robinson, Digital Signature Standard (DSS), Gaithersburg, MD: FIPS PUB 186-5, 2023.
    [4] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve cryptography, New York, NY: Springer Science & Business Media, 2006.
    [5] B. K. Do-Nguyen, C. Pham-Quoc, N. -T. Tran, C. -K. Pham and T. -T. Hoang, "Multi-Functional Resource-Constrained Elliptic Curve Cryptographic Processor," IEEE Access, vol. 11, pp. 4879-4894, 2023.
    [6] B. Panjwani, "Scalable and parameterized hardware implementation of elliptic curve digital signature algorithm over prime fields," in Proc. Int. Conf. Adv. Comput. Commun. Informatics (ICACCI), Udupi, India, 2017.
    [7] C. Pham-Quoc and P. L. S. Ngan., "A High-Throughput FPGA-Based Elliptic Curve Digital Signature Core for IoT Edge Platforms," in Proc. Int. Conf. Comput. Sci. Appl. (ICCSA) Workshops, 2024.
    [8] B. K. Do-Nguyen, C. Pham-Quoc, N.-T. Tran, C.-K. Pham, and T.-T. Hoang, "Low-Cost Area-Efficient FPGA-Based Multi-Functional ECDSA/EdDSA," Cryptography, vol. 6, 2022.
    [9] K. Javeed and D. Gregg, "Point Multiplication Accelerator for Arbitrary Montgomery Curves," IEEE Embed. Syst. Lett., vol. 16, no. 4, pp. 465-468, 2024.
    [10] M. M. Islam, M. S. Hossain, M. K. Hasan, M. Shahjalal and Y. M. Jang, "FPGA Implementation of High-Speed Area-Efficient Processor for Elliptic Curve Point Multiplication Over Prime Field," IEEE Access, vol. 7, pp. 178811-178826, 2019.
    [11] Xie, Y., He, Z., Liu, Y., Zheng, X., Cai, S. and Xiong, X, "A speed-area-efficient hardware ECPM-engine in GF(p) over generic Weierstrass curves," Electron. Lett., vol. 60, p. 13069, 2024.
    [12] Y. A. Shah, K. Javeed, S. Azmat, and X. J. Wang, "A high-speed RSD-based flexible ECC processor for arbitrary curves over general prime field," Int. J. Circuit Theory Appl., vol. 46, no. 10, pp. 1858-1878, 2018.
    [13] H. Marzouqi, M. Al-Qutayri, K. Salah, D. Schinianakis, and T. Stouraitis, "A high-speed FPGA implementation of an RSD-based ECC processor," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 1, pp. 151-164, 2016.
    [14] V. S. Miller, "Use of Elliptic Curves in Cryptography," in Adv. Cryptol. – CRYPTO, Santa Barbara, CA, 1986.
    [15] N. Koblitz, "Elliptic Curve Cryptosystems," Math. Comput., vol. 48, no. 177, pp. 203-209, 1987.
    [16] P. L. Montgomery, "Speeding the Pollard and elliptic curve methods of factorization," Math. Comp., vol. 48, no. 177, pp. 243-264, 1987.
    [17] M. Hamburg, "Faster Montgomery and double-add ladders for short Weierstrass curves," IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 4, pp. 189-208, 2020.
    [18] P. L. Montgomery, "Modular multiplication without trial division," Math. Comput., vol. 44, no. 170, pp. 519-521, 1985.
    [19] H. Orup, "Simplifying quotient determination in high-radix modular multiplication," in Proc. IEEE Symp. Comput. Arithmetic, Bath, UK, 1995.
    [20] Y. Kim, W. Kang, and J. Choi, "Implementation of 1024-bit modular processor for RSA cryptosystem," in Proc. IEEE Asia–Pacific Conf. ASIC, Cheju, South Korea, 2000.
    [21] Y.-Y. Zhang, Z. Li, L. Yang, and S.-W. Zhang, "An efficient CSA architecture for Montgomery modular multiplication," Microprocess. Microsyst., vol. 31, no. 7, pp. 456-459, 2007.
    [22] C. McIvor, M. McLoone, and J.V. McCanny, "Modified Montgomery modular multiplication and RSA exponentiation techniques," IEE Proc. Comput. Digit. Tech., vol. 151, no. 6, pp. 402-408, 2004.
    [23] S. -R. Kuang, K. -Y. Wu and R. -Y. Lu, "Low-Cost High-Performance VLSI Architecture for Montgomery Modular Multiplication," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 2, pp. 434-443, 2016.
    [24] H. -Y. Chen, K. -Y. Peng and K. -J. Lee, "A Novel Unified Modular Arithmetic Unit for Elliptic Curve Cryptography," in Proc. Int. Symp. VLSI Technol., Syst. Appl. (VLSI-TSA), HsinChu, Taiwan, 2023.
    [25] C. D. Walter, "Montgomery exponentiation needs no final subtractions," Electron. Lett., vol. 35, no. 21, pp. 1831-1832, 1999.
    [26] K. Javeed, "FPGA Implementation of Area-Time Aware ECC Scalar Multiplication Core*," in Proc. IEEE Int. Conf. Electron., Circuits Syst. (ICECS), Istanbul, Turkiye, 2023.
    [27] Y. Hao, S. Zhong, M. Ma, R. Jiang, S. Huang, J. Zhang, and W. Wang, "Lightweight architecture for elliptic curve scalar multiplication over prime field," Electronics, vol. 11, no. 14, p. 2234, 2022.
    [28] M. S. Rahman, M. S. Hossain, E. H. Rahat, D. R. Dipta, H. M. R. Faruque, and F. K. Fattah, "Efficient hardware implementation of 256-bit ECC processor over prime field," in Proc. Int. Conf. Comput. Commun. Technol. Agric. Eng. (ECCE), Cox'sBazar, Bangladesh, 2019.
    [29] T. Kudithi and R. Sakthivel, "An efficient hardware implementation of the elliptic curve cryptographic processor over prime field, Fp," Int. J. Circuit Theor. Appl., vol. 48, no. 8, pp. 1256-1273, 2020.
    [30] S. Mirzaei-Teshnizi and P. Keshavarzi, "Parallel Modular Multiplication Using Variable Length Algorithms," IEEE Trans. Comput., vol. 74, no. 1, pp. 143-154, Jan. 2025.
    [31] H. Zhou, C. Liu, L. Yang, L. Shang and F. Yang, "A Fully Pipelined Reconfigurable Montgomery Modular Multiplier Supporting Variable Bit-Widths," IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 43, no. 12, pp. 4653-4665, Dec. 2024.
    [32] B. Zhang, Z. Cheng and M. Pedram, "Design of a High-Performance Iterative Barrett Modular Multiplier for Crypto Systems," IEEE Trans. VLSI Syst., vol. 32, no. 5, pp. 897-910, May 2024.
    [33] R.-M. Coliban, "FPGA implementation of interleaved modular multiplier with improved area-time efficiency," in Proc. 11th IEEE Int. Conf. Intell. Data Acquis. Adv. Comput. Syst. Technol. Appl. (IDAACS), Cracow, Poland, 2021.
    [34] T. Kudithi, M. Potdar, and R. Sakthivel, "Radix-4 Interleaved Modular Multiplication for Cryptographic Applications," in Proc. Int. Conf. Vis. Towards Emerg. Trends Commun. Netw. (ViTECoN), Vellore, India, 2019.
    [35] M. S. Hossain and Y. Kong, "FPGA-based efficient modular multiplication for Elliptic Curve Cryptography," in Proc. Int. Telecommun. Netw. Appl. Conf. (ITNAC), Piscataway, NJ, USA, 2015.

    無法下載圖示 校內:2030-07-02公開
    校外:2030-07-02公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE