簡易檢索 / 詳目顯示

研究生: 李侑芳
Lee, Yu-Fang
論文名稱: 結合磁珠技術的快速檢測登革熱感染及流感病毒感染之微流體晶片
A Magnetic-bead-based Microfluidic System For Rapid Detection of Dengue Fever & Influenza Virus Infection
指導教授: 李國賓
Lee, Gwo-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 98
中文關鍵詞: 微型線圈微流體磁珠微機電系統免疫球蛋白G螢光免疫分析免疫球蛋白M
外文關鍵詞: IgG, MEMS, fluorescent immunoassay (FIA), microfluidics, microcoils, magnetic bead, IgM
相關次數: 點閱:135下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發一自動化微流體晶片系統,藉由微型磁珠上對登革熱病毒極高專一性的抗體可以針對登革熱病毒或是因感染登革熱所產生的免疫球蛋白M (Immunoglobulin M, IgM)和免疫球蛋白G (Immunoglobulin G, IgG)作結合,進行以磁珠為基礎的免疫分析法檢測流程,可同時偵測登革熱病毒專一的IgM和IgG。相較於傳統檢測方法,酵素連結免疫分析法 (Enzyme-linked immunosorbent assay, ELISA)是用平面式的反應槽進行檢體抗原抗體的結合反應,有著繁瑣的人為操作程序,耗費相當多的反應時間。將微型磁珠應用檢體之萃取,並在本晶片上自動地完成抗原抗體的接合反應以及檢體的螢光偵測,可以減少人為操作的不定性,更可大幅縮短操作時間與步驟,其具有高檢測靈敏度、可拋棄式、可攜帶性、低樣品及檢體消耗量、低耗能、體積小以及成本低等優點,相較傳統分析檢測技術下,有著突破性的發展價值。
    此微流體晶片系統中包含微型幫浦、薄膜式微混合器以及微型線圈等元件。其中薄膜式微混合器操作條件為1.37 Hz與通入之壓縮氣壓其壓為20 psi時,可於6秒內達到約莫96 %的混合效果,可使檢體於最短的時間內有最佳的混合效率並且有效的提升檢測的靈敏度。而所有元件將整合於一微型晶片系統上,共包含一薄膜式檢體混合模組、二雙向式微流體傳輸模組、一微陣列式環型磁線圈以及三個單向微流體傳輸模組和兩個螢光偵測區,以達到自動化傳輸流體、混合的功能,並於最後將微流體系統晶片應用於檢體內IgG和IgM檢測。
    本研究成功地使偵測極限由傳統酵素連結免疫分析法的0.8 ng,提高到21 pg,反應時間也由4小時縮短至30分,而使用螢光系統取代傳統酵素連結免疫分析法的酵素呈色可以提升整個系統的靈敏度。另外,實驗結果也顯示利用磁珠為基礎的免疫分析法確實可以偵測流感病毒,使靈敏度從傳統的1.28 HAU增加到1.28×10-5HAU。本研究也成功的實驗證明了利用免疫檢測微流體晶片系統在生醫檢測分析上確實大大地提升檢測的效能與靈敏度。

    This study reports an integrated microfluidic system which utilizes virus-bound magnetic-bead complexes for rapid serological analysis of antibodies associated with an infection by the dengue virus. This new microfluidic system integrates one-way micropumps, a four-membrane-type micromixer, two-way micropumps and an on-chip microcoil array in order to simultaneously perform the rapid detection of immunoglobulin G (IgG) and immunoglobulin M (IgM). An IgM/IgG titer in serum is used to confirm the presence of dengue virus infection. By utilizing microfluidic technologies and virus-bound magnetic beads, IgG and IgM in the serum samples are first captured. This is followed by purification and isolation of these beads utilizing a magnetic field generated from the on-chip microcoil array. Any interfering substances in the biological fluids are washed away automatically by the flow generated by the integrated pneumatic pumps. The fluorescence-labelled secondary antibodies are then bound onto the surface of the IgG/IgM complex attached onto the magnetic beads. Finally, the entire magnetic complex sandwich is transported automatically into a sample detection chamber. The optical signals are then measured and analyzed by an optical detection module. The entire process is performed automatically on a single chip within 30 minutes, which is only 1/8th of the time required for a traditional method. More importantly, the detection limit has been improved to 21 pg, which is about 38 times better when compared to traditional methods. In addition, the magnetic-bead-based immunoassay also can detect influenza virus, the sensitivity has been enhanced to 1.28×10-5 HAU. This integrated system may provide a powerful platform for the rapid diagnosis of dengue virus infection and other types of infectious diseases.

    摘要.................................................. I Abstract.............................................. III 致謝.................................................. V 目錄.................................................. VII 圖目錄................................................ XI 表目錄................................................ XVI 縮寫及符號說明........................................ XVII 第一章序論............................................ 1 1.1微機電系統簡介..................................... 1 1.2文獻回顧........................................... 1 1.2.1登革熱簡介....................................... 1 1.2.2流感簡介......................................... 3 1.2.3酵素連結免疫吸附分析............................. 5 1.2.4微流體系統在生物上的應用......................... 7 1.2.5微混合器文獻回顧................................. 9 1.3研究動機與目的..................................... 10 1.4論文架構........................................... 12 第二章 晶片設計與材料方法............................. 22 2.1實驗原理與系統操作流程............................. 22 2.2整合型晶片設計..................................... 23 2.3微幫浦設計......................................... 23 2.4微混合器設計....................................... 24 2.5實驗架設........................................... 25 2.6材料............................................... 25 2.6.1病毒和血清檢體................................... 26 2.6.2 磁珠表面修飾 .................................... 26 2.6.2.1磁珠表面修飾抗登革熱抗體....................... 26 2.6.2.2磁珠表面修飾抗流感抗體......................... 27 2.6.3病毒接合磁珠 (Virus-holding magnetic beads)製備.. 28 2.7生物實驗方法....................................... 28 2.7.1以微流體晶片偵測免疫球蛋白....................... 28 2.7.1.1偵測登革熱病毒專一之免疫球蛋白部分............. 28 2.7.1.2偵測流感病毒專一之免疫球蛋白部分............... 30 2.7.2以微流體晶片偵測登革熱病毒....................... 31 2.7.3微流體系統的專一性測試 ............................32 2.7.3.1登革熱部份..................................... 32 2.7.3.2流感部份....................................... 34 2.7.4微流體系統的靈敏度測試 ........................... 36 2.7.4.1登革熱靈敏度測試............................... 36 2.7.4.2流感靈敏度測試................................. 36 2.7.5登革熱酵素連結免疫分析法之靈敏度測試............. 37 3.1 光罩製作.......................................... 48 3.2晶片製程........................................... 48 3.2.1 晶片清潔........................................ 48 3.2.2 SU-8製程........................................ 49 3.2.3 PDMS翻模........................................ 51 3.3微線圈製程......................................... 53 第四章 結果與討論..................................... 61 4.1微流體元件測試..................................... 61 4.1.1微幫浦效能測試................................... 61 4.1.2微混合器效能測試................................. 62 4.1.3微線圈效能測試................................... 63 4.2生物應用........................................... 64 4.2.1病毒檢測......................................... 64 4.2.2 免疫球蛋白檢測.................................. 64 4.2.3專一性........................................... 65 4.2.3.1登革熱免疫球蛋白之專一性部分................... 65 4.2.3.2流感專一性部分................................. 67 4.2.4.1登革熱靈敏度部份............................... 68 4.2.4.2流感靈敏度部份................................. 69 第五章 結論與未來展望................................. 82 5-1結論............................................... 82 5-2 未來展望.......................................... 83 參考文獻.............................................. 85 自述.................................................. 97

    [1] Tay, F. E. H, ”Microfluidics and bio-MEMS Applications”, Kluwer Academic Publishers, 2002.
    [2] Burns, M. A., Johnson, B. N., Brahmasadra,S.N., Handique,K., Webster,J.R., Krishnan, M., Sammarco, T. S., Man, P.M., Jones,D., Heldsinger, D., Mastrangelo, C. H., and Burk, D. T., “An Integrated Nanoliter DNA Analysis Device”, Science, 282, 484-488, 1998.
    [3] Seiler, K., Harrison, D. J., and Manz, A., “Planar chips technology for miniaturization and integration of separation techniques into monitoring systems,” Journal of Chromatography, 593, 253-258, 1992.
    [4] Oosterbroek, E., van den Berg, A., ”Lab-on-a-chip:Miniaturized system for biochemical analysis and synthesis”, Elsevier Science, 2nd edition, Amsterdam, USA. 2003.
    [5] Geschke, O., Klank, H., and Telleman, P., “Microsystem Engineering of Lab-on-a –chip Devices”, John Wiley&Sons press, 2nd edition ,New York, USA. 2004.
    [6] Auroux, P. A., Iossifidis, D., Reyes, D. R., Manz, A., “Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications ”, Anal Chem, 74, 2637-2652, 2002.
    [7] Reyes, D. R., Iossifidis, D., Auroux, P. A., Manz, N., “Micro Total Analysis Systems. 1. Introduction,Theory, and Technology”, Anal. Chem, 74, 2623-2636, 2002.
    [8] Paul, M., Arguin, M. D., Phyllis, E., Kozarsky M. D., and Christie Reed M. D.2007, The Yellow Book-CDC Health Information for International Travel, Centers for Disease Control and Prevention Press, Atlanta, USA.2008.
    [9] Kouri, G. P., Guzman, M. G., Bravo, J. R., and Triana, C., ”Dengue haemorrhagic fever/dengue shock syndrome: lessons from the Cuban epidemic, 1981”, Bull World Health Organ, 67, 375-380, 1989.
    [10] Pan American Health Organization,”Dengue hemorrhagic fever in Venezuela”, Epidemiol Bull, 11, 7-9, 1990.
    [11] Gibbons, R. V., and Vaughn, D. W., “Dengue: an escalating problem” , BMJ, 324, 1563-1566, 2002.
    [12] Monath, T. P., Heinz, F. X. Flaviviruses. In: Fields BN, Knipe DM, Howley M, eds. Fields Virology, 3rd ed. Philadelphia: Lippincott-Raven, 961–1034, 1996.
    [13] Burke, D. S., Nisalak, A., Johnson, D. E., and Scott, R. M., “A Prospective Study of Dengue Infections in Bangkok”, Am.J.Trop.Med.Hyg, 38, 172-180, 1988.
    [14] Dengue haemorrhagic fever: diagnosis, treatment, prevention and control,World Health Organization,2nd edition, Epidemic and Pandemic Alert and Response Publications, Geneva, Switzerland, 1997.
    [15] Endy, T. P., Chunsuttiwat, S., Nisalak, A., Libraty, D. H., Green, S., Rothman, A .L., Vaughn, D. W.,and Ennis,F.A. “Epidemiology of Inapparent and Symptomatic Acute Dengue Virus Infection: A Prospective Study of Primary School Children in Kamphaeng Phet, Thailand” Am.J.Epidemiol, 156, 40-51, 2002.
    [16] Shu, P. Y., Chen, L. K., Chang, S. F., Yueh, Y. Y., Chow, L., Chien, L. J., Chin, C., Lin, T. H., Huang, J. H., ”Comparison of Capture Immunoglobulin M (IgM) and IgG Enzyme-Linked Immunosorbent Assay (ELISA) and Nonstructural Protein NS1 Serotype-Specific IgG ELISA for Differentiation of Primary and Secondary Dengue Virus Infections “, Clin Diagn Lab Immun ,10, 622–630, 2003.
    [17] Gubler, D. J., “Dengue and dengue hemorrhagic fever”, Clin. microbiol. rev,11, 480-496, 1998.
    [18] Guzma´n, M. G., and Kouri´, G., “Advances in Dengue Diagnosis“, Clin.Diagn.Lab.Immunol, 3, 621-627, 1996.
    [19] 蘇至誠,”臨床快速檢測用登革熱之免疫晶片之研究”,國立東華大學生物技術研究所碩士論文2003。
    [20] Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Arnheim, N., “Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia”, Science, 230, 1350-1354, 1985.
    [21] Mullis, K. B., Ferre, F., and Gibbs, R. A., The polymerase chain reaction, Boston, Birkhauser, USA, 1994.
    [22] Innis, B. L., Nisalak, A., Nimmannitya S., Kusalerdchariya, S., Chongswasdi, V.S., Suntayakorn, P. P., and Hoke, C. H., “An Enzyme-linked Immunosorbent Assay to Characterize Dengue Infections where Dengue and Japanese Encephalitis Co-circulate “, Am,J.Trop.Med Hyg, 40, 418-427, 1989.
    [23] Coligan, J. E., Kruisbeek, A. M., Margulies, D. H., Shevach, and Strober, W. Current Protocols in Immunology, Wiley, New York, 1997.
    [24] Cox, N. J., Brammer, T. L., Regnery, H. L., “Influenza: Global surveillance for epidemic and pandemic variants”, Eur J Epidemiol, 10, 467-470, 1994.
    [25] 衛生署疾病管制局,流感及禽流感簡介及因應措施,疫情報導, 20(1),1-12,2004.
    [26] Cox, N. J., Bender, C. A., “The molecular epidemiology of influenza viruses”, Sem Virol, 6, 359-370, 1995.
    [27] Ng, N. K., Zhang, H., Tan, K., Li, Z., Liu, J. H., Chan, P. K., Li, S. M., Chan, W. Y., Au, S. W., Joachimiak, A., Walz, T., Wang, J. H., Shaw, P. C., “Structure of the influenza virus A H5N1 nucleoprotein: implications for RNA binding, oligomerization, and vaccine design”, The FASEB Journal, 22, 3638-3647, 2008.
    [28] Biswas, S. K., Nayak, D. P., “Mutational Analysis of the Conserved Motifs of Influenza A Virus Polymerase Basic Protein 1”, J. VIROL, 68(3), 1819-1828, 1994.
    [29] Ellis, J. S., Zambon, M. C., “Molecular diagnosis of influenza” Rev. Med. Virol, 12, 375-389, 2002.
    [30] Golds, R. A., Kindt, T. J., Osborne, B.A., Kbuy immunology, W.H FREEMAN AND COMPANY, New York, 2002.
    [31] Vilkner, T. , Janasek D., and Manz, A., “Micro total analysis systems: recent developments,” Anal. Chem, 76, 3373-3385, 2004.
    [32] Grodzinski P., Liu, R., Yang J. and Ward ,M. D., “Microfluidic system integration in sample preparation chip-sets-a summary,” Proc. of the 26th Annual International Conference of the IEEE EMBS., San Francisco, USA, September 1-5, 2615-2618, 2004.
    [33] Bini, A., Centi, S., Tombelli, S., Mascini, M. M., “Development of an optical RNA-based aptasensor for C-reactive protein”, Anal Bioanal Chem , 390, 1077–1086, 2008.
    [34] Choi, J.W., Oh, K.W., Thomas, J.H., Heineman, W. R., Halsall, H. B.,Nevin, J. H., Hemicki, A. J., Hederson, H. T.,Ahn, C. H., ”An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities”, Lab Chip, 2, 27 – 30, 2002.
    [35] Gascoyne, P., Satayavivad, J., Ruchirawat, M., “Microfluidic approaches to malaria detection,” Acta Tropica, 89(3), 357-369, 2004.
    [36] Weigl, B. H., Bardell, R. L., Cabrera, C. R., “Lab-on-a-chip for drug development’’, Advanced Drug Delivery Reviews, 55(3), 349-377, 2003.
    [37] Sia, S. K., Whitesides, G. M., “Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies”, ELECTROPHORESIS, 24(21) , 3563 – 3576, 2003.
    [38] Ying, H., Elizabeth, L. M., Janice, L.B., and Marc, M., “MEMS-based sample preparation for molecular diagnostics”,Anal Bioanal Chem, 372, 49-65, 2002.
    [39] Martin A. M. Gijs, “Magnetic bead handling on-chip: new opportunities for analytical applications”, Microfluid Nanofluid, 1, 22-40, 2004.
    [40] Choi, J. W., Chong, H. A., Bhansali, S., Henderson, H. T., “A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems”, Sens Actuat B, 68, 34-39, 2000.
    [41] Fuentes, M., Mateo, C., Rodriguez, A., Casqueiro, M., Tercero, J. C., Riese, H. H., Lafuente, R. F., Jose M. Guis´an ,”Detecting minimal traces of DNA using DNA covalently attached to superparamagnetic nanoparticles and direct PCR-ELISA“, Biosens Bioelectron, 21,1574-1580, 2006.
    [42] Matsunaga, T., Maeda, Y., Yoshino, T., Takeyama, H., Takahashi, M., Ginya, H., Aasahina, J., Tajima, H., “Fully automated immunoassay for detection of prostate-specific antigen using nano-magnetic beads and micro-polystyrene bead composites, ‘Beads on Beads’”. Analytica Chimica Acta , 597, 331-339, 2007.
    [43] Vignali, D. A. A., “Multiplexed particle-based flow cytometric assays”, J. Immunol. Methods, 243, 243-255, 2000.
    [44] Holmes, D., Joseph, K. S., Roach, P. L., and Hywel, M., “Bead-based immunoassays using a micro-chip flow cytometer”, Lab chip, 7, 1048-1056, 2007.
    [45] Bai, Y., Koh, C. G., Boreman, M., Juang, Y. J., Tang, I. C., Lee, L. J., Yang, S.T., “Surface Modification for Enhancing Antibody Binding on Polymer-Based Microfluidic Device for Enzyme-Linked Immunosorbent Assay”, Langmuir, 22, 9458-9467, 2006.
    [46] Henry, C., “Can MS really compete in the DNA world”, Anal. Chem, 69, 359A-361A, 1997.
    [47] Eteshola, E., and Balberg, M., “Microfluidic ELISA: On-chip Fluorescence Imaging”, 6(1), Biomed. Microdev , 7-9, 2004.
    [48] Zaytseva, N. V., Montagna, R. A., Baeumner, A. J., ”Microfluidic Biosensor for the Serotype-Specific Detection of Dengue Virus RNA”, Anal. Chem, 77, 7520-7527, 2005.
    [49] Yang, Z., Goto, H., Matsumoto, M., and Maeda, R., “Active micromixer for microfluidic systems using lead- zirconate-titanate (PZT)-generated ultrasonic vibration”, Electrophoresis, 21, 116-119, 2002.
    [50] Schasfoort, R. B. M., Schlautmann, S., Hendrikse, J., and Berg A. van den, “Field-effect flow control for microfabricated fluidic networks,” Science, 286, 942-945, 1999.
    [51] Tsai , J. H. and Lin L., “Active microfluidic mixer and gas bubble filter driven by thermal bubble pump,” Sensors Actuators A, 97, 665–671, 2002.
    [52] Lin, J. L., Lee , K. H. and Lee, G. B. “Active micro-mixers utilizing a gradient zeta potential induced by inclined buried shielding electrodes,” Journal of Micromechanics and Microengineering, 16, 757-768, 2006.
    [53] Tseng, H. Y., Wang, C. H., Lin, W. Y., Lee, G. B. “Membrane-activated microfluidic rotary devices for pumping and mixing,” Biomed Microdevices, 9, 545–554, 2007.
    [54] Yang, S. Y., Lin, J. L., and Lee, G. B.,”A vortex-type micromixer utilizing pneumatically driven membranes”, J. Micromech. Microen, 19, 2009.
    [55] Lien, K. Y., Liu, C.J., Lin, Y. C., Kuo, P. L., Lee, G. B., ” Extraction of genomic DNA and detection of single nucleotide polymorphism genotyping utilizing an integrated magnetic bead-based microfluidic platform”, Microfluid Nanofluid, 6, 539–555, 2009.
    [56] Liu, R. H., Stremler, M. A., Sharp, K. V. , Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref H. and Beebe, D. J. “Passive mixing in a three-dimensional serpentine microchannel,” IEEE/ASME Journal of Microelectromechanical Systems, 9,190-197, 2000.
    [57] Stroock, A. D., Dertinger, S. K., Ajdari,W. A., Mezic , I., Stone , H. A. and Whitesides, G. M., “Chaotic mixer for microchannels,” Science, 295, 647-651, 2002.
    [58] Schwab, K. J., Leon R. D., and Sobsey, M. D., “Immunoaffinity concentration and purification of water borneenteric viruses for detection by reverse transcriptase PCR,” Applied and Environmental Microbiology, 62(6), 2086-2094, 1996.
    [59] Lee, Y. F., Lien, K. Y., Lei, H. Y., and Lee, G. B., “A Magnetic-Bead Based Microfludic System for Rapid Detection of Immunoglobulins,” The 15th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducer 09), Denver, Colorado, USA, Jun. 21-25, 2009.
    [60] Lien, K. Y., Lin, W. Y., Lee, Y. F., Wang, C. H., Lei, H. Y., and Lee, G. B., “Microfluidic System Integrated with Sample Pretreatment Device for Fast Nucleic Acid Amplification,” IEEE/ASME Journal of Microelectromechanical Systems, 17(2), 288-301, 2008.
    [61] Lee, Y. F., Lien, K. Y., Lei, H. Y., and Lee, G. B., “An integrated microfluidic system for rapid diagnosis of dengue virus infection” submit to Biosens Bioelectron.
    [62] 黃蓉芬,楊燕枝, 微機電製程技術應用於生醫領域之研究,工業技術研究院產業經濟與資訊服務中心出版社,新竹縣,92。
    [63] Slentz, B. E., Penner, N. A., and Regnier, F. E., “Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane)
    chips modified by cerium(IV)-catalyzed polymerization,” Journal of Chromatography A, Vol. 948, 25–233, 2002.
    [64] 連剛逸,”整合型微流體晶片系統應用於樣品前處理及快速核酸增幅”, 國立成功大學奈米科技暨微系統工程研究所碩士論文,2007。
    [65] Ahn , C. H., Kim, Y. J. and Allen ,M. G., “A fully integrated planar toroidal inductor with a micromachined nickel-iron magnetic bar,” IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A, 17, 463-469, 1994.
    [66] Wu, J., Quinn, V., and Bernstein, B. H., “Powering efficiency of inductive links with inlaid electroplated microcoils, ” Journal of Micromechanics and Microengineering, 14, 576-586, 2004.
    [67] Do, J., and Ahn, C. H., “A polymer lab-on-a-chip for magnetic immunoassay with on-chip sampling and detection capabilities” Lab chip, 8, 542-549, 2008.
    [68] Kim, K. S. and Park, J. K., “Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel”, Lab chip, 5, 657-664, 2005.

    下載圖示 校內:2011-08-13公開
    校外:2011-08-13公開
    QR CODE