簡易檢索 / 詳目顯示

研究生: 徐晟峻
Hsu, Cheng-Chun
論文名稱: 三維界標自動定位與其測顱分析應用
Three-Dimensional Landmarking and Cephalometry
指導教授: 鄭國順
Cheng, Kuo-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 53
中文關鍵詞: 電腦斷層界標點影像對位
外文關鍵詞: Computed tomography, Landmark, Image registration
相關次數: 點閱:101下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 測顱術是應用頭顱上有定義的界標點以測量顱顏相關距離與角度資料,在齒顎矯正與顏面整型相當重要,過去醫師通常是利用二維的正面與側面測顱片進行測顱分析,現今由於牙科用電腦斷層掃描系統迅速發展,三維測顱分析逐漸變成一重要課題,本研究的主要目的在於研發醫學影像處理技術,建立一個三維頭顱界標自動定位與測量系統。本系統首先需要使用者以徒手方式標記出兩點界標點(Por與N),然後系統會自動執行影像校正;接著系統會在所欲分析的三維頭顱上自動搜尋51個自行定義的對位標記點,再將系統預建的通用界標模型利用影像對位的方式建立兩者最佳的座標轉換關係,然後進行設定邊界條件或縮小搜尋範圍做自動定位八點界標點。此外使用者也透過操作界面在三維頭顱影像中自行給定界標點和測量所有相關距離與角度,以進行臨床分析與評估。本研究影像資料是擷取現有錐形X-光束電腦斷層掃描系統,同一個案重複自動界標定位十五次,從實驗結果顯示,x軸最大的標準差0.27 mm,y軸最大的標準差0.17 mm,z軸最大的標準差0.81 mm,故本系統之界標自動定位相當精確;將定位結果與一位醫師所點的界標點相比較,在八個界標點中最大誤差的距離為4 mm。

    Cephalometry utilizes the defined landmarks for measuring the associated distances and angels of craniofacial structure. It is very important in orthodontics and plastic surgery. In the past, two-dimensional postero-anterior view and lateral view of cephalograms are usually used by the doctors to perform the cephalometric analysis. To date, due to the rapid development of dental CT, three dimensional cephalometric analysis becomes an important issue. The major purpose of this study is to develop a three-dimensional landmarking and cephalometric system using the medical image processing technology. Firstly, user needs to manually locate two landmarks (Por and N) for the proposed system to do the image calibration. Then, 51 points are searched and registered to the pre-built generic landmarks model. Afterwards, the best coordinate transformation between the target skull and the generic model is found to set up the boundary conditions or narrow down the searching region. Eight landmarks are then automatically located by the proposed system. The image data set for this study is acquired from the cone-beam CT. The landmarking for one case is repeated in fifteen times. From the experimental results, the standard deviations along the x-axisis, y-axis, and z-axis are less than 0.27 mm, 0.17mm, and 0.81mm, respectively. The landmarking of the proposed system is demonstrated to be very precise. In comparison with the landmarks manually located by an experienced orthodontist for five cases, the maximal distance error of all the landmarks is about 4 mm.

    CHINESE ABSTRACT Ⅲ ABSTRACT Ⅳ ACKNOWLEDGEMENT Ⅴ LIST OF TABLES Ⅷ LIST OF FIGURES Ⅸ Chapter 1 Introduction 1 1.1 Background 1 1.2 Computed Tomography and Landmarking 2 1.2.1 Computed Tomography (CT) 2 1.2.2 Landmarking and Cephalometry 6 1.3 Literature Review 8 1.4 Motivation and Purpose 9 Chapter 2 Materials and Methods 10 2.1 Research Framework 10 2.1.1 Visual Toolkit (VTK) and Image Description 11 2.2 Image Calibration 12 2.3 A Generic 3D Model 14 2.4 Thin-Plate Splines (TPS) 16 2.5 Locating Landmarks 19 2.5.1 GoR and GoL 19 2.5.2 B and Pog 23 2.5.3 ANS 25 2.5.4 Me 26 Chapter 3 Experiments and Results 28 3.1 The GUI System 28 3.2 Image Calibration 30 3.3 Registration 34 3.4 Tangent Line of Mandible Bone 35 3.5 Linear Regression of inferior Mandibular Margin 36 3.6 Landmarking 37 Chapter 4 Discussion 46 Chapter 5 Conclusion 49 References 50

    [1] 劉德雄,洪嘉駿,測顱術於睡眠呼吸障礙之診斷-299名病例分析,台灣耳鼻喉頭頸外科雜誌,第39卷第2號,2004。
    [2] Pao-Hsin Liu, Chih-Han Chang, and Hong-Po Chang, “The Morphometric Analysis of Cranial Base in Class Ⅲ Malocclusion,” Journal of Medical and Biological Engineering, vol.21, pp.43-50, 2001.
    [3] V. Grau, M. Alcaniz, M. C. Juan, C. Monserrat, and C. Knoll, “Automatic Localization of Cephalometric Landmarks,” Journal of Biomedical Informatics, vol.34, pp.146-156, 2001.
    [4] Chih-Hsin Ou,The Morphology-Based Approach for Automated Landmarking of PA Cephalogram with Head Rotation Monitoring, Master thesis, Institute of Biomedical Engineering , National Cheng Kung University, July, 2008.
    [5] Min-Ching Wu, Three-dimensional cephalogram analysis in orthodontics, Master thesis, Institute of Oral Medicine, National Cheng Kung University, June, 2005.
    [6] Bassam Hassan, Paul van der Stelt and Gerard Sanderink, “Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position,” European Journal of Orthodontics, vol.31, pp.129-134, 2009.
    [7] Tim J. Hutton, Sue Cunningham and Peter Hammond, “An evalution of active shape models for the automatic identification of cephalometric landmarks,” European Journal of Orthodontics, vol.22, pp.499-508, 2000.
    [8] R. Olszewski, G. Cosnard, B. Macq, P. Mahy and H. Reychler, “3D CT-based cephalometric analysis: 3D cephalometric theoretical concept and software, Neuroradiology,” vol.48, pp.853-862, 2006.
    [9] W. Ronald Redmond and Heon-Jae Cho, THE CUTTING EDGE, JCO, pp.235-252, 2009.
    [10] G.R.J. Swennen, F.A.C. Schutyser and J.-E. Hausamen, Three-Dimensional Cephalometry, Book, 2005.
    [11] Ming-Dar Tsai, Wen-Cheng Chung and Ming-Shium Hsieh, “Three-dimensional Landmarking Based Maxillomandibular Deformity Diagnosis Using Three-dimensional Computer Tomography,” Journal of Medical and Biological Engineering, vol.22, pp129-138, 2002.
    [12] R.J.A. Lapeer and R.W. Prager, “3D shape recovery of a newborn skull using thin-plate splines,” Computerized Medical Imaging and Graphics, vol.24, pp.193-204, 2000.
    [13] Fred L. Bookstein, “Principal Warps: Thin-Plate Splines and the decomposition of Deformations,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, pp.567-585, 1989.
    [14] Gregory L. Adams, Stuart A. Gansky and Arthur J. Miller, ”Comparison between traditional 2-dimensional cephalometry and a 3-dimensional approach on human dry skulls, “ Journal of Orthodontics and Dentofacial Orthopedics, vol. 126, pp. 397-409, 2004.
    [15] Danielle R. Periago, William C. Scarfe, Mazyar Moshiri, James P. Scheetzd, Anibal M. Silveira and Allan G. Farman, “Linear Accuracy and Reliability of Cone Beam CT Derived 3-Dimensional Images Constructed Using an Orthodontic Volumetric Rendering Program,” Angle Orthodontist, vol. 78, pp.387-395, 2008.
    [16] Manuel O. Lagravère, Jason Carey, Roger W. Toogood, and Paul W. Majord, “Three-dimensional accuracy of measurements Three-dimensional accuracy of measurements tomography images,” Journal of Orthodontics and Dentofacial Orthopedics, vol. 134, pp 112-116, 2008.
    [17]http://bmeimage.be.cycu.edu.tw/lab/database/CT/CT.html
    [18] Peter J. Taub, “Cephalometry,“ Journal of Craniofacial Surgery, vol. 18, pp. 811-817, 2007.
    [19] I. El-Feghi, M.A. Sid-Ahmed and M. Ahmadi, “Automatic localization of craniofacial landmarks for assisted cephalometry,” Pattern Recognition, vol. 37, pp. 609-621, 2004.
    [20] P. J. Turner and S. Weerakone, “An Evaluation of the Reproducibility of Landmark Identification Using Scanned Cephalometric Images,” Journal of Orthodontics, vol. 28, pp.221-229, 2001.
    [21] Alexander Jacobson,Richard L. Jacobson, Radiographic cephalometry: from basics to 3-D imaging, Quintessence Pub., 2006.
    [22] William H. Bell, Distraction Osteogenesis of the Facial Skeleton, BC Decker Inc, 2007.
    [23] 台北市牙科植體學學,3D植牙新視界(3D軟、硬體於牙科植體學之應用),2008。
    [24] Atsushi Muramatsu, Hiroyuki Nawa, Momoko Kimura, Kazuhito Yoshida, Masahito Maeda, Akitoshi Katsumata, Eiichiro Ariji and Shigemi Goto, “Reproducibility of Maxillocfacial Anatomic Landmarks on 3-Dimensional Computed Tomographic Images Determined with the 95% Confidence Ellipse Method,” Angle Orthodontist, vol. 78, pp. 396-402, 2008
    [25] Chien-chiang Huang, The Reconstruction and Registration of Virtual Dental Cast, Master thesis, Institute of Biomedical Engineering, National Cheng Kung University, July, 2004.

    下載圖示 校內:2011-08-31公開
    校外:2011-08-31公開
    QR CODE