| 研究生: |
蘇建瑋 Su, Chien-Wei |
|---|---|
| 論文名稱: |
「主動式隔間水槽阻尼器」操控模式對結構減振之效應 The Effects of APTD Controlling Parameters on the Suppression of Structural Vibration |
| 指導教授: |
丁舜臣
Ting, Shuenn-Chern |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 隔間水槽阻尼器 、阻尼率 |
| 外文關鍵詞: | Partitioned Tank Damper, damping ratio |
| 相關次數: | 點閱:178 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隔間水槽阻尼器(Partitioned Tank Damper, PTD)是一種水槽中間設置垂直隔板固定開度的調諧液體阻尼器(Tuned Liquid Damper, TLD)。配置PTD的結構系統受地震作用時,其PTD可以有、以及無主動式操控。兩者的結構物振幅比率若遠小於1,則有明顯減振效應。系統外的往復式空壓機以柔性導管連接PTD的兩側隔間,便可主動操控PTD內流體的運動,即形成APTD。
本文探討APTD的兩個操控參數對結構減振之效應。操控參數之一為位移回饋係數,代表空壓機活塞閥片與結構系統位移量之比。位移回饋係數之最大值受限於伺服馬達的加速能力。其二為時間延遲控制係數,代表兩者之相位差。即兩者位移量之歷時曲線具有固定比例之相似形狀,而將空壓機活塞閥片對應位移延後一個相位角發生。
在PTD內部水面上放置浮板;使用時,水體在兩槽間流動,觀察液面的運動對隔板為反對稱,可簡化為兩個自由度。其一為水面平均昇高量,其二為水面斜度,加上結構體具有一個自由度,合計為三個自由度的非線性運動方程式。本研究以試驗為主,結構系統位移以雷射位移計擷取,PTD液面的昇高量與液面坡度歷時曲線以攝影機擷取。運動方程式中唯一無法量取的是系統阻尼,可由數值計算得到。
試驗的案例為分別在震動台步階位移振動與簡諧振動的條件下,改變位移回饋係數與時間延遲控制係數,執行96組案例並分析其減振效果。試驗案例的阻尼率由分析結構物位移歷時得到。PTD內流場之數值計算採用有限解析法配合移動曲線貼壁格網,求解流場水壓力對結構系統的作用力。再以試誤法配合其他擷取的條件,調整系統阻尼,使位移反應與實測者相近,求出系統阻尼率。試驗結果顯示在空氣壓縮機馬達的加速度限制下,結構系統阻尼率與位移回饋係數成正比關係,與時間延遲控制係數成週期性關係。當相位差大約60度時阻尼率達到最大,相位差180度到300度時阻尼率最小。
Partitioned Tank Damper (PTD) is a kind of Tuned Liquid Damper (TLD), especially in which a partition is placed in the tank. To suppress the vibration excited by earthquakes, the PTD equipped in the structural system may be controlled either actively or non-actively. As the amplitude ratio of structural vibrations under those two controlling types is far less than one, the suppression effect is significant. Each of the two chambers in the PTD is connected to the corresponding one of the two outlets of reciprocating-type air compressor with flexible hose to enable the active control of fluid motion in PTD, that is, the Active Partitioned Tank Damper (APTD).
This thesis has studied the effects of two APTD controlling parameters on the suppression of structural vibrations. The first one is the displacement feedback parameter representing the ratio between the displacements of air compressor piston and structural system. The maximal value of feedback parameters is subjected to the air pump acceleration capacity of its servo motor. The second one is the time delay control parameter representing the phase lag between the displacements of air compressor piston and structural system. While time histories of displacement for both structural system and air compressor do have a similar shape with a proportion, corresponding displacements of air compressor occur a phase angle behind.
Observation shows that the motion of fluid inside PTD, with floating plates placed on the water surface, is anti-symmetrical to the partition. The motion of fluid may be simplified to have two degrees of freedom. One is the averaged water surface elevation, measured above the still water level, in right chamber, and the other is the water surface inclination. In addition, the motion of the structure has one degree of freedom. In summary, the motion equation for the system of structure plus PTD is nonlinear, and has three degrees of freedom. Main efforts are concentrated on the testing part of study. Laser displacement sensors were utilized to measure the motion of the structure. Pictures taken by CCD camera were analyzed to trace the water surface elevation and inclination in PTD. The system damping is the only variable left in the motion equation unmeasured, however, which can be analyzed numerically.
Harmonic motions and step shifts were the two types of excitations provided by the shaking table. 96 experimental run cases were conducted for the combination of various feedback ratios and phase lag angles, to examine the suppression effect. The damping ratio of test cases was obtained by analyzing structural displacement time histories. Numerical analyses of fluid motion in PTD were performed, using finite-analytic method and transient boundary-fitted grid system, to evaluate the water force acting on the structural system. Finally, the suppression effects in terms of the embedded damping ratios were revealed using trial and error procedures. The result shows that under the limit of air pump servo motor acceleration capacity, the greater the feedback ratio the larger the system ratio, while as the system damping ratio, being a maximum at a phase lag angle around 60° and a minimum at the range of 180°to 300°, is periodically related to the phase lag angle.
陳永祥、黃維信、范文己(1993),“防震水箱與高樓之動力互制作用之研究”,行政院國家科學委員會專題研究計劃成果報告,NSC-83-0410-E002-052。
張志華(1997),“非線性長波與結構物互制現象之研究”,國立成功大學博士論文,民國86年5月。
林威宏(1998),“含流動液體之阻尼器對結構的減振效應”,國立成功大學碩士論文,民國87年6月。
林明德(1999),“水錘波傳遞特性及液柱分離現象分析”,國立成功大學碩士論文,民國88年6月。
曾申融(2000),“「浮蓋板與儲水槽」動力特性之試驗研究”,國立成功大學碩士論文,民國89年6月。
李國彰(2000),“「孔口式調諧液柱阻尼器」孔口開度對結構減振之效應”,國立成功大學碩士論文,民國89年6月。
黃勝弘(2002),“「隔間容器阻尼器」動力特性之試驗研究”,國立成功大學碩士論文,民國91年6月。
徐德修、侯建元、許文奕、李永峰(2002),“結構控制技術與系統識別研究子計畫:加強式液流阻尼器之研發”,行政院國家科學委員會補助專題研究計畫成果報告,NSC-90-2625-Z-006-010。
Fujino et al (1988a), “An Experimental Study on Tuned Liquid Damper Using Circular Containers,” JSCE Joural of Structural Engineering, Vol. 34A, pp. 603-616。
Fujino et al (1988b), “Parametric Studies on Tuned Liquid Damper (TLD) Using Circular Containers by Free-Oscillation Experiments,” Structural Engineering/Earthquake Engineering, JSCE, No. 398/I-10, Vol. 5, No. 2, pp. 381s-391s。
Gao et al (1997), “Optimization of tuned liquid column dampers,” Engineering Structures v 19 n 6 pp. 476-486。
Noji et al (1988), “Study on Vibration Control Damper Utilizing Sloshing of Water,” Journal of Wind Engineering, No. 37, pp. 557-566。
Noji et al (1990), “Study of Water-Sloshing Vibration Control Damper,” Journal of Structural Construction of Engineering, AIJ, No. 411, pp. 97-105。
Symans, and Constantinou, (1999), “Semi-active control systems for seismic protection of structures:a state-of-the-art review,” Engineering Structures, Vol. 21, pp. 469-487。
Tamura et al (1988), “Wind-Induced Vibation of Tall Towers and Practical Applications of Tuned Sloshing Damper,” Proceedings, Workshop on Serviceability of Buildings, Ottawa, Ontario, Canada, pp. 228-241。
Tamura et al (1996), “Wind-induced responses of an airport tower –efficiency of tuned liquid damper,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 65,pp.121-131。
Wakahara et al (1991), “Wind Response Analysis of TLD Structure System Considering Nonlinearity of Liquid Motion,” Journal of Structural Construction Engineering, AIJ, No. 426, pp. 79-88。
Warnitchai, and Pinkaew, (1999), “Modeling of liquid sloshing in rectangular tanks with flow-dampening devices,” Engineering Structural, ASME, Vol. 121 NO. 7 ,pp.593-600。
Wu, and Hsieh, (2002), “Study on the dynamic characteristic of a U-type tuned liquid damper,” Ocean Engineering, Vol. 29, pp. 689-709。
Xue et al (2000) “Tuned liquid column damper for suppressing pitching motion of structures,” Engineering Structures, Vol. 23, pp. 1538-1551。
Yoneda et al (1991), “A Practical Study on Tuned Liquid Damper With Application to Cable-Stayed Bridge Tower,” JSCE Joural of Structural Engineering, Vol. 37A, pp. 1019-1028。
Yang, and Agrawal, (2002), “Semi-active hybrid control systems for nonlinear buildings against near-field earthquakes,” Engineering Structures, Vol. 24, pp.271-280。