簡易檢索 / 詳目顯示

研究生: 李承祐
Li, Cheng-You
論文名稱: 溶膠凝膠法製備具可靠性的非晶Ce2Ti2O7薄膜應用於電阻式記憶體元件
Reliable RRAM Devices Utilizing Sol-Gel Derived Amorphous Ce2Ti2O7 Thin Films
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 130
中文關鍵詞: 溶膠凝膠法Ce2Ti2O7薄膜電阻式記憶體金屬後退火AlOx層
外文關鍵詞: Ce2Ti2O7, Sol-gel, Amorphous, RRAM, Post-metal annealing, AlOx
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這項研究中,使用溶膠凝膠法在 ITO/玻璃基板上製備非晶 Ce2Ti2O7(CTO)薄膜。研究薄膜厚度、上電極、退火溫度、金屬後退火以 及在 CTO 薄膜和 ITO/玻璃之間插入額外的 AlOx 層對元件電阻切換特性 (RS)的影響。所有樣品均表現出雙極電阻開關(BRS)行為。在金屬後退火 (PMA)處理下的樣品中觀察到 Al 和 AlOx 在 Al/CTO 界面處的擴散與形 成。擴散的 Al 原子可以作為摻雜劑提供額外的氧空位,而自形成的 AlOx 則有助於阻止氧離子向外擴散。經過金屬後退火的 Al/CTO/ITO 樣品展示 1565次的開關週期,–1.1 V/1.0 V之低工作電壓,電阻比(Ron/Roff)約為100, 保留時間(Retention time)在常溫下可達 一萬秒。另外,在 CTO/ITO 界面插入 AlOx 層的元件(Al/CTO/AlOx/ITO),其開關週期提高到1926次,電阻比提升至1000,使其成為 RRAM 應用中具有前途的候選者。本研究的電流傳導機制在低阻態(LRS)的 Set 和 Reset 過程中,均表現出斜率為~1 的線性關係,為歐姆導通。在 HRS 中表現出~2 的斜率,為陷阱控制的空間電荷限制傳導 (SCLC)。

    In this study, amorphous Ce2Ti2O7 (CTO) thin films were prepared on ITO/glass substrates using the sol-gel method. The effects of film thickness, annealing temperature, post-metal annealing, and the insertion of an additional AlOx layer between the CTO thin film and ITO/glass on the resistive switching (RS) characteristics of the devices were investigated. All samples exhibited bipolar resistive switching (BRS) behavior. During the post-metal annealing (PMA) treatment, diffusion and formation of Al and AlOx at the Al/CTO interface were observed. The diffused Al atoms acted as dopants, providing additional oxygen vacancies, while the self-formed AlOx layer contributed to preventing the outward diffusion of oxygen ions. The Al/CTO/ITO samples subjected to metal annealing demonstrated 1565 switching cycles, low operating voltages of –1.1 V/1.0 V, a high resistance ratio (Ron/Roff) of ~100, and retention time of 10000 s at room temperature. Furthermore, devices with an AlOx layer inserted at the CTO/ITO interface (Al/CTO/AlOx/ITO) showed improved switching cycles and resistance ratio, making them promising candidates for resistive random-access memory (RRAM) applications. The current conduction mechanism in the low-resistance state (LRS) during the Set and Reset processes exhibited a linear relationship with a slope of ~1, indicating Ohmic conduction. In the high-resistance state (HRS), a slope of ~2 was observed, indicating trap-controlled space charge-limited conduction (SCLC).

    摘要 I 致謝 XIX 目錄 XX 表目錄 XXII 圖目錄 XXIII 第一章 緒論 1 1.1 前言 1 1.2 研究目的與動機 4 第二章 文獻回顧 6 2.1 Ce2Ti2O7材料介紹 6 2.2 記憶體介紹 8 2.2.1 揮發性記憶體 (Volatile Memory, VM) 9 2.2.2 非揮發性記憶體 (Non-volatile Memory, NVM) 11 2.3 電阻式隨機存取記憶體(RRAM)介紹 21 2.3.1 單極電阻轉換 (Unipolar Resistive Switching, URS) 22 2.3.2 雙極電阻轉換 (Bipolar Resistive Switching, BRS) 23 2.4 電阻轉換特性材料 25 2.4.1 二元過渡金屬氧化物 25 2.4.2 稀土族氧化物 26 2.4.3 鈣鈦礦結構氧化物 28 2.4.4 有機/高分子材料 29 2.5 電阻轉換機制 31 2.5.1 導電燈絲機制 (Conducting Filaments Mechanism) 31 2.5.2 界面導電機制 (Interface-type conducting path) 34 2.6 漏電流傳導機制 37 2.6.1 電極限制傳導機制 (Electrode-limited) 38 2.6.2 本體限制傳導機制 (Bulk-limited) 40 第三章 實驗步驟與方法 45 3.1 溶膠凝膠法(Sol-Gel)介紹 45 3.1.1 薄膜製備 46 3.1.2 低溫乾燥熱處理 47 3.1.3 高溫退火熱處理 48 3.2 實驗流程 49 3.2.1 使用藥品 49 3.2.2 Sol-Gel調配 49 3.2.3 ITO玻璃基板清洗 50 3.2.4 薄膜塗佈與乾燥 50 3.2.5 薄膜退火 (Annealing) 51 3.2.6 電子束蒸鍍 (Electron-Beam Evaporation) 51 3.2.7 金屬後退火 (Post Metal Annealing, PMA) 51 3.3 實驗設備 53 3.3.1 磁石加熱攪拌器 53 3.3.2 旋轉塗佈機 53 3.3.3 爐管 53 3.3.4 電子束蒸鍍機 54 3.4 量測與分析儀器 55 3.4.1 低掠角薄膜X光繞射儀 (X-ray Diffractometer, XRD) 56 3.4.2 高解析掃描式電子顯微鏡 (High Resolution Scanning Electron Microscope, HR-SEM) 57 3.4.3 多功能原子力顯微鏡 (Atomic Force Microscope, AFM) 58 3.4.4 X光光電子能譜儀 (X-ray Photoelectron Spectroscope, XPS) 59 3.4.5 高解析穿透式電子顯微鏡 (Ultrahigh Resolution Transmission Electron Microscope, HR-TEM) 60 3.4.6 半導體參數分析儀 61 第四章 結果與討論 63 4.1 Ce2Ti2O7薄膜分析 63 4.1.1 XRD晶相分析 63 4.1.2 SEM表面與剖面分析 64 4.1.3 AFM表面形貌分析 67 4.1.4 XPS表面化學分析 68 4.1.5 TEM微區域結構分析 75 4.2 Ce2Ti2O7電性分析 76 4.2.1 CTO薄膜厚度對Al/CTO/ITO電阻轉換特性之影響 77 4.2.2 上電極(Al、Ti)對於CTO/ITO電阻轉換特性之影響 86 4.2.3 退火溫度對元件電阻轉換特性之影響 91 4.2.4 金屬後退火與額外AlOx層對元件電阻轉換特性之影響 99 4.2.5 元件之導電燈絲模型 111 4.3 比較與討論 115 第五章 結論 117 參考文獻 120

    [1] M. Lanza, "A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope," Materials (Basel), vol. 7, no. 3, pp. 2155-2182, Mar 13 2014, doi: 10.3390/ma7032155.
    [2] H. Akinaga and H. Shima, "Resistive Random Access Memory (ReRAM) Based on Metal Oxides," Proceedings of the IEEE, vol. 98, no. 12, pp. 2237-2251, 2010, doi: 10.1109/jproc.2010.2070830.
    [3] Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, and M. Liu, "Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM," Adv Mater, vol. 24, no. 14, pp. 1844-9, Apr 10 2012, doi: 10.1002/adma.201104104.
    [4] C. Lee, I. Kim, W. Choi, H. Shin, and J. Cho, "Resistive switching memory devices composed of binary transition metal oxides using sol-gel chemistry," Langmuir, vol. 25, no. 8, pp. 4274-8, Apr 21 2009, doi: 10.1021/la804267n.
    [5] Y. Chen, L. Li, X. Yin, A. Yerramilli, Y. Shen, Y. Song, W. Bian, N. Li, Z. Zhao, W. Qu, N. D. Theodore, and T. L. Alford, "Resistive Switching Characteristics of Flexible TiO2 Thin Film Fabricated by Deep Ultraviolet Photochemical Solution Method," IEEE Electron Device Letters, vol. 38, no. 11, pp. 1528-1531, 2017, doi: 10.1109/led.2017.2756444.
    [6] S. Ha, H. Lee, W.-Y. Lee, B. Jang, H.-J. Kwon, K. Kim, and J. Jang, "Effect of Annealing Environment on the Performance of Sol–Gel Processed ZrO2 RRAM," Electronics, vol. 8, no. 9, 2019, doi: 10.3390/electronics8090947.
    [7] H. Xie, Q. Liu, Y. Li, H. Lv, M. Wang, X. Liu, H. Sun, X. Yang, S. Long, S. Liu, and M. Liu, "Nitrogen-induced improvement of resistive switching uniformity in a HfO2 based RRAM device," Semiconductor Science and Technology, vol. 27, no. 12, 2012, doi: 10.1088/0268-1242/27/12/125008.
    [8] H. Li, B. Niu, Q. Mao, J. Xi, W. Ke, and Z. Ji, "Resistive switching characteristics of ZnO based ReRAMs with different annealing temperatures," Solid-State Electronics, vol. 75, pp. 28-32, 2012, doi: 10.1016/j.sse.2012.04.032.
    [9] Y.-S. Hong, J.-Y. Chen, C.-W. Huang, C.-H. Chiu, Y.-T. Huang, T. K. Huang, R. S. He, and W.-W. Wu, "Single-crystalline CuO nanowires for resistive random access memory applications," Applied Physics Letters, vol. 106, no. 17, 2015, doi: 10.1063/1.4919102.
    [10] M. Ismail, E. Ahmed, A. M. Rana, F. Hussain, I. Talib, M. Y. Nadeem, D. Panda, and N. A. Shah, "Improved Endurance and Resistive Switching Stability in Ceria Thin Films Due to Charge Transfer Ability of Al Dopant," ACS Appl Mater Interfaces, vol. 8, no. 9, pp. 6127-36, Mar 9 2016, doi: 10.1021/acsami.5b11682.
    [11] P. K. Sarkar, M. Prajapat, A. Barman, S. Bhattacharjee, and A. Roy, "Multilevel resistance state of Cu/La2O3/Pt forming-free switching devices," Journal of Materials Science, vol. 51, no. 9, pp. 4411-4418, 2016, doi: 10.1007/s10853-016-9753-6.
    [12] X. Cao, X. Li, X. Gao, W. Yu, X. Liu, Y. Zhang, L. Chen, and X. Cheng, "Forming-free colossal resistive switching effect in rare-earth-oxide Gd2O3 films for memristor applications," Journal of Applied Physics, vol. 106, no. 7, 2009, doi: 10.1063/1.3236573.
    [13] K. H. Chen, M. C. Kao, S. J. Huang, and J. Z. Li, "Bipolar Switching Properties of Neodymium Oxide RRAM Devices Using by a Low Temperature Improvement Method," Materials (Basel), vol. 10, no. 12, Dec 12 2017, doi: 10.3390/ma10121415.
    [14] T. Zhang, X. Ou, W. Zhang, J. Yin, Y. Xia, and Z. Liu, "High-k-rare-earth-oxide Eu2O3 films for transparent resistive random access memory (RRAM) devices," Journal of Physics D: Applied Physics, vol. 47, no. 6, 2014, doi: 10.1088/0022-3727/47/6/065302.
    [15] H. I. Kim, T. Lee, W. Y. Lee, K. Kim, J. H. Bae, I. M. Kang, S. H. Lee, K. Kim, and J. Jang, "Improved Environment Stability of Y(2)O(3) RRAM Devices with Au Passivated Ag Top Electrodes," Materials (Basel), vol. 15, no. 19, Oct 2 2022, doi: 10.3390/ma15196859.
    [16] J. Huang and D. Ma, "Electrical switching and memory behaviors in organic diodes based on polymer blend films treated by ultraviolet ozone," Applied Physics Letters, vol. 105, no. 9, 2014, doi: 10.1063/1.4895122.
    [17] S.-H. Liu, W.-L. Yang, C.-C. Wu, T.-S. Chao, M.-R. Ye, Y.-Y. Su, P.-Y. Wang, and M.-J. Tsai, "High-Performance Polyimide-Based ReRAM for Nonvolatile Memory Application," IEEE Electron Device Letters, vol. 34, no. 1, pp. 123-125, 2013, doi: 10.1109/led.2012.2224633.
    [18] Z. H. Tang, Y. Xiong, D. L. Xu, M. H. Tang, Z. P. Wang, Y. G. Xiao, B. W. Zeng, X. C. Gu, J. C. Li, and L. H. Wang, "Resistive Switching Properties of Sol-Gel-Derived V-Doped SrTiO3 Thin Films," Journal of Electronic Materials, vol. 42, no. 8, pp. 2510-2515, 2013, doi: 10.1007/s11664-013-2600-5.
    [19] F. Lv, C. Gao, P. Zhang, C. Dong, C. Zhang, and D. Xue, "Bipolar resistive switching behavior of CaTiO3 films grown by hydrothermal epitaxy," RSC Advances, vol. 5, no. 51, pp. 40714-40718, 2015, doi: 10.1039/c5ra02605a.
    [20] Y.-T. Chen, T.-H. Hsu, and C.-L. Huang, "Resistive switching properties of amorphous Sm2Ti2O7 thin film prepared by RF sputtering for RRAM applications," Journal of Alloys and Compounds, vol. 910, 2022, doi: 10.1016/j.jallcom.2022.164960.
    [21] H.-T. Tseng, T.-H. Hsu, M.-H. Tsai, C.-Y. Huang, and C.-L. Huang, "Resistive switching characteristics of sol-gel derived La2Zr2O7 thin film for RRAM applications," Journal of Alloys and Compounds, vol. 899, 2022, doi: 10.1016/j.jallcom.2021.163294.
    [22] M. Ismail, R. Ullah, R. Hussain, I. Talib, A. M. Rana, M. Hussain, K. Mahmood, F. Hussain, E. Ahmed, and D. Bao, "Influence of argon and oxygen pressure ratio on bipolar resistive switching characteristics of CeO2−x thin films deposited at room temperature," Applied Physics A, vol. 124, no. 2, 2018, doi: 10.1007/s00339-017-1512-2.
    [23] V. Prusakova, C. Collini, M. Nardi, R. Tatti, L. Lunelli, L. Vanzetti, L. Lorenzelli, G. Baldi, A. Chiappini, A. Chiasera, D. Ristic, R. Verucchi, M. Bortolotti, and S. Dirè, "The development of sol–gel derived TiO2 thin films and corresponding memristor architectures," RSC Advances, vol. 7, no. 3, pp. 1654-1663, 2017, doi: 10.1039/c6ra25618j.
    [24] Z. Gao, L. Liu, X. Han, X. Meng, L. Cao, G. Ma, Y. Liu, J. Yang, Q. Xie, H. He, and A. Belik, "Cerium Titanate (Ce2Ti2O7): A Ferroelectric Ceramic with Perovskite-Like Layered Structure (PLS)," Journal of the American Ceramic Society, vol. 98, no. 12, pp. 3930-3934, 2015, doi: 10.1111/jace.13854.
    [25] C. H. Kao, S. Z. Chen, Y. Luo, W. T. Chiu, S. W. Chiu, I. C. Chen, C.-Y. Lin, and H. Chen, "The influence of Ti doping and annealing on Ce2Ti2O7 flash memory devices," Applied Surface Science, vol. 396, pp. 1673-1677, 2017, doi: 10.1016/j.apsusc.2016.12.008.
    [26] W.-G. Kim and S.-W. Rhee, "Effect of the top electrode material on the resistive switching of TiO2 thin film," Microelectronic Engineering, vol. 87, no. 2, pp. 98-103, 2010, doi: 10.1016/j.mee.2009.05.023.
    [27] H. Young Jeong, S. Kyu Kim, J. Yong Lee, and S.-Y. Choi, "Role of Interface Reaction on Resistive Switching of Metal/Amorphous TiO2/Al RRAM Devices," Journal of The Electrochemical Society, vol. 158, no. 10, 2011, doi: 10.1149/1.3622295.
    [28] S. Yu, "Resistive Random Access Memory (RRAM) From Devices to Array Architectures," 2016.
    [29] M. R. I. a. M. S. R. K. S DEBNATH, "Optical properties of CeO2 thin films," Indian Academy of Sciences, 2006.
    [30] b. Mei-Ya Li a, *, Zhong-Lie Wang c, Shou-Shan Fan d, Qing-Tai Zhao c, GuangCheng Xiong a, "Structural characteristics and the control of crystallographic orientation of CeO2 thin ®lms prepared by laser ablation," 1998.
    [31] M. F. Al-Kuhaili, S. M. A. Durrani, and I. A. Bakhtiari, "Carbon monoxide gas-sensing properties of CeO2–ZnO thin films," Applied Surface Science, vol. 255, no. 5, pp. 3033-3039, 2008, doi: 10.1016/j.apsusc.2008.08.058.
    [32] A. Younis, D. Chu, I. Mihail, and S. Li, "Interface-engineered resistive switching: CeO(2) nanocubes as high-performance memory cells," ACS Appl Mater Interfaces, vol. 5, no. 19, pp. 9429-34, Oct 9 2013, doi: 10.1021/am403243g.
    [33] A. Bayart, Z. Shao, A. Ferri, P. Roussel, R. Desfeux, and S. Saitzek, "Epitaxial growth and nanoscale electrical properties of Ce2Ti2O7 thin films," RSC Advances, vol. 6, no. 39, pp. 32994-33002, 2016, doi: 10.1039/c6ra01225f.
    [34] A. Chilvery, S. Das, P. Guggilla, C. Brantley, and A. Sunda-Meya, "A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells," Sci Technol Adv Mater, vol. 17, no. 1, pp. 650-658, 2016, doi: 10.1080/14686996.2016.1226120.
    [35] W. Gul, M. Shams, and D. Al-Khalili, "SRAM Cell Design Challenges in Modern Deep Sub-Micron Technologies: An Overview," Micromachines (Basel), vol. 13, no. 8, Aug 17 2022, doi: 10.3390/mi13081332.
    [36] W. Liu, Z. Zhang, M. Li, and Z. Liu, "A trustworthy key generation prototype based on DDR3 PUF for wireless sensor networks," Sensors (Basel), vol. 14, no. 7, pp. 11542-56, Jun 30 2014, doi: 10.3390/s140711542.
    [37] M. Sanvido, F. R. Chu, A. Kulkarni, and R. Selinger, "nand Flash Memory and Its Role in Storage Architectures," Proceedings of the IEEE, vol. 96, no. 11, pp. 1864-1874, 2008, doi: 10.1109/jproc.2008.2004319.
    [38] Z. Song, S. Song, M. Zhu, L. Wu, K. Ren, W. Song, and S. Feng, "From octahedral structure motif to sub-nanosecond phase transitions in phase change materials for data storage," Science China Information Sciences, vol. 61, no. 8, 2018, doi: 10.1007/s11432-018-9404-2.
    [39] N. H. E.-H. Patrick W. C. Ho, T. Nandha Kumar, and Haider Abbas F. Almurib "PCM and Memristor Based Nanocrossbars," 2015.
    [40] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. N. Piramanayagam, "Spintronics based random access memory: a review," Materials Today, vol. 20, no. 9, pp. 530-548, 2017, doi: 10.1016/j.mattod.2017.07.007.
    [41] C. S. Hwang and T. Mikolajick, "Ferroelectric memories," in Advances in Non-Volatile Memory and Storage Technology, 2019, pp. 393-441.
    [42] J. Singh, S. Meena, U. C. Min Sze, and T.-Y. Tseng*, "Overview of emerging nonvolatile memory technologies," 2014.
    [43] D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, "Emerging memories: resistive switching mechanisms and current status," Rep Prog Phys, vol. 75, no. 7, p. 076502, Jul 2012, doi: 10.1088/0034-4885/75/7/076502.
    [44] T. Endoh, H. Koike, S. Ikeda, T. Hanyu, and H. Ohno, "An Overview of Nonvolatile Emerging Memories—Spintronics for Working Memories," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 6, no. 2, pp. 109-119, 2016, doi: 10.1109/jetcas.2016.2547704.
    [45] C. F. Liu, Tang, X. G., Wang, L. Q., Tang, H., Jiang, Y. P., Liu, Q. X., Li, W. H., Tang, Z. H., "Resistive Switching Characteristics of HfO(2) Thin Films on Mica Substrates Prepared by Sol-Gel Process," Nanomaterials (Basel), vol. 9, no. 8, Aug 4 2019, doi: 10.3390/nano9081124.
    [46] S. Gao, C. Song, C. Chen, F. Zeng, and F. Pan, "Dynamic Processes of Resistive Switching in Metallic Filament Based Organic Memory Devices," The Journal of Physical Chemistry C, vol. 116, no. 33, pp. 17955-17959, 2012, doi: 10.1021/jp305482c.
    [47] M. Akbari, M.-K. Kim, D. Kim, and J.-S. Lee, "Reproducible and reliable resistive switching behaviors of AlOx/HfOx bilayer structures with Al electrode by atomic layer deposition," RSC Advances, vol. 7, no. 27, pp. 16704-16708, 2017, doi: 10.1039/c6ra26872b.
    [48] D. Berco and T.-Y. Tseng, "A numerical study of forming voltage and switching polarity dependence on Ti top electrode thickness in ZrO2 RRAM," Journal of Computational Electronics, vol. 15, no. 2, pp. 595-601, 2015, doi: 10.1007/s10825-015-0783-0.
    [49] P. Sun, N. Lu, L. Li, Y. Li, H. Wang, H. Lv, Q. Liu, S. Long, S. Liu, and M. Liu, "Thermal crosstalk in 3 -dimensional RRAM crossbar array," Sci Rep, vol. 5, p. 13504, Aug 27 2015, doi: 10.1038/srep13504.
    [50] R. Liu, D. Mahalanabis, H. J. Barnaby, and S. Yu, "Investigation of Single-Bit and Multiple-Bit Upsets in Oxide RRAM-Based 1T1R and Crossbar Memory Arrays," IEEE Transactions on Nuclear Science, vol. 62, no. 5, pp. 2294-2301, 2015, doi: 10.1109/tns.2015.2465164.
    [51] F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, "Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications," Nanoscale Res Lett, vol. 15, no. 1, p. 90, Apr 22 2020, doi: 10.1186/s11671-020-03299-9.
    [52] L. Zou, W. Hu, W. Xie, and D. Bao, "Uniform resistive switching properties of fully transparent TiO2-based memory devices," Journal of Alloys and Compounds, vol. 693, pp. 1180-1184, 2017, doi: 10.1016/j.jallcom.2016.10.009.
    [53] S.-Y. Wang, C.-H. Tsai, D.-Y. Lee, C.-Y. Lin, C.-C. Lin, and T.-Y. Tseng, "Improved resistive switching properties of Ti/ZrO2/Pt memory devices for RRAM application," Microelectronic Engineering, vol. 88, no. 7, pp. 1628-1632, 2011, doi: 10.1016/j.mee.2010.11.058.
    [54] T. Iino, T. Moriyama, H. Iwaki, H. Aono, Y. Shiratsuchi, and T. Ono, "Resistive detection of the Néel temperature of Cr2O3 thin films," Applied Physics Letters, vol. 114, no. 2, 2019, doi: 10.1063/1.5082220.
    [55] Lin, Wu, and Chen, "Effects of Sm2O3 and V2O5 Film Stacking on Switching Behaviors of Resistive Random Access Memories," Crystals, vol. 9, no. 6, 2019, doi: 10.3390/cryst9060318.
    [56] H. Zheng, H. J. Kim, P. Yang, J.-S. Park, D. W. Kim, H. H. Lee, C. J. Kang, and T.-S. Yoon, "Forming-free resistive switching characteristics of Ag/CeO2/Pt devices with a large memory window," Semiconductor Science and Technology, vol. 32, no. 5, 2017, doi: 10.1088/1361-6641/aa6379.
    [57] P. Tung-Ming, L. Chih-Hung, S. Mondal, and K. Fu-Hsiang, "Resistive Switching Characteristics of Tm2O3, Yb2O3, and Lu2O3-Based Metal Insulator–Metal Memory Devices," IEEE Transactions on Nanotechnology, vol. 11, no. 5, pp. 1040-1046, 2012, doi: 10.1109/tnano.2012.2211893.
    [58] X. Pan, Y. Shuai, C. Wu, W. Luo, X. Sun, Y. Yuan, S. Zhou, X. Ou, and W. Zhang, "Resistive switching behavior in single crystal SrTiO3 annealed by laser," Applied Surface Science, vol. 389, pp. 1104-1107, 2016, doi: 10.1016/j.apsusc.2016.08.013.
    [59] A. Thakre, J. Kaswan, A. K. Shukla, and A. Kumar, "Unipolar resistive switching behavior in sol–gel synthesized FeSrTiO3 thin films," RSC Advances, vol. 7, no. 85, pp. 54111-54116, 2017, doi: 10.1039/c7ra09836g.
    [60] T. Zhang, Y. Bai, C.-H. Jia, and W.-F. Zhang, "Interface-related switching behaviors of amorphous Pr0.67Sr0.33MnO3 -based memory cells," Chinese Physics B, vol. 21, no. 10, 2012, doi: 10.1088/1674-1056/21/10/107304.
    [61] P. Xu, D. Chang, T. Lu, L. Li, M. Li, and W. Lu, "Search for ABO(3) Type Ferroelectric Perovskites with Targeted Multi-Properties by Machine Learning Strategies," J Chem Inf Model, vol. 62, no. 21, pp. 5038-5049, Nov 14 2022, doi: 10.1021/acs.jcim.1c00566.
    [62] H.-H. Choi, M. Kim, J. Jang, K. H. Lee, J. Y. Jho, and J. H. Park, "Tip-enhanced electric field driven efficient charge injection and transport in organic material-based resistive memories," Applied Materials Today, vol. 20, 2020, doi: 10.1016/j.apmt.2020.100746.
    [63] K. W. Lin, T. Y. Wang, and Y. C. Chang, "Impact of Top Electrodes on the Nonvolatile Resistive Switching Properties of Citrus Thin Films," Polymers (Basel), vol. 13, no. 5, Feb 26 2021, doi: 10.3390/polym13050710.
    [64] B. Cho, T. W. Kim, S. Song, Y. Ji, M. Jo, H. Hwang, G. Y. Jung, and T. Lee, "Rewritable switching of one diode-one resistor nonvolatile organic memory devices," Adv Mater, vol. 22, no. 11, pp. 1228-32, Mar 19 2010, doi: 10.1002/adma.200903203.
    [65] X. Zhang, L. Xu, H. Zhang, J. Liu, D. Tan, L. Chen, Z. Ma, and W. Li, "Effect of Joule Heating on Resistive Switching Characteristic in AlO(x) Cells Made by Thermal Oxidation Formation," Nanoscale Res Lett, vol. 15, no. 1, p. 11, Jan 15 2020, doi: 10.1186/s11671-019-3229-y.
    [66] J. Park, H. Ryu, and S. Kim, "Nonideal resistive and synaptic characteristics in Ag/ZnO/TiN device for neuromorphic system," Sci Rep, vol. 11, no. 1, p. 16601, Aug 16 2021, doi: 10.1038/s41598-021-96197-8.
    [67] S. Cho, J. Jung, S. Kim, and J. J. Pak, "Conduction mechanism and synaptic behaviour of interfacial switching AlOσ-based RRAM," Semiconductor Science and Technology, vol. 35, no. 8, 2020, doi: 10.1088/1361-6641/ab8d0e.
    [68] C. Wang, H. Wu, B. Gao, T. Zhang, Y. Yang, and H. Qian, "Conduction mechanisms, dynamics and stability in ReRAMs," Microelectronic Engineering, vol. 187-188, pp. 121-133, 2018, doi: 10.1016/j.mee.2017.11.003.
    [69] E. Lim and R. Ismail, "Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey," Electronics, vol. 4, no. 3, pp. 586-613, 2015, doi: 10.3390/electronics4030586.
    [70] F.-C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films," Advances in Materials Science and Engineering, vol. 2014, pp. 1-18, 2014, doi: 10.1155/2014/578168.
    [71] T. Y. Kazuki Nagashima, Keisuke Oka, et al., "Unipolar resistive switching characteristics of room temperature grown SnO2 thin films," 2009, doi: 10.1063/1.3156863.
    [72] E. I. Morosanova, "Silica and silica-titania sol-gel materials: synthesis and analytical application," Talanta, vol. 102, pp. 114-22, Dec 15 2012, doi: 10.1016/j.talanta.2012.07.043.
    [73] R. Voo, M. Mariatti, and L. C. Sim, "Properties of epoxy nanocomposite thin films prepared by spin coating technique," Journal of Plastic Film & Sheeting, vol. 27, no. 4, pp. 331-346, 2011, doi: 10.1177/8756087911419745.
    [74] H. Wu, M. Xue, J. Ou, F. Wang, and W. Li, "Effect of annealing temperature on surface morphology and work function of ZnO nanorod arrays," Journal of Alloys and Compounds, vol. 565, pp. 85-89, 2013, doi: 10.1016/j.jallcom.2013.02.172.
    [75] C.-H. Hsu and S.-Y. Lin, "Characterization of ZrTiO4 thin films prepared by sol–gel method," Materials Science in Semiconductor Processing, vol. 16, no. 5, pp. 1262-1266, 2013, doi: 10.1016/j.mssp.2013.01.015.
    [76] F. Gul, "Carrier transport mechanism and bipolar resistive switching behavior of a nano-scale thin film TiO2 memristor," Ceramics International, vol. 44, no. 10, pp. 11417-11423, 2018, doi: 10.1016/j.ceramint.2018.03.198.
    [77] E. Bêche, P. Charvin, D. Perarnau, S. Abanades, and G. Flamant, "Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz)," Surface and Interface Analysis, vol. 40, no. 3-4, pp. 264-267, 2008, doi: 10.1002/sia.2686.
    [78] M. Ismail, A. Ahmad, K. Mahmood, T. Akbar, A. M. Rana, J. Lee, and S. Kim, "Room temperature deposited oxygen-deficient CeO2 layer for multilevel resistive switching memory," Applied Surface Science, vol. 483, pp. 803-810, 2019, doi: 10.1016/j.apsusc.2019.04.013.
    [79] A. Kumar, J. Hong, Y. Yun, A. Bhardwaj, and S.-J. Song, "The role of surface lattice defects of CeO2−δ nanoparticles as a scavenging redox catalyst in polymer electrolyte membrane fuel cells," Journal of Materials Chemistry A, vol. 8, no. 48, pp. 26023-26034, 2020, doi: 10.1039/d0ta09397a.
    [80] T. Guo, T. Tan, and Z. Liu, "Stable resistive switching characteristics of Ce:HfOx film induced by annealing process," Materials Science in Semiconductor Processing, vol. 54, pp. 65-69, 2016, doi: 10.1016/j.mssp.2016.07.002.
    [81] Ya-Wen Zhang, Rui Si, Chun-Sheng Liao, and C.-H. Yan*, "Facile Alcohothermal Synthesis, Size-Dependent Ultraviolet Absorption, and Enhanced CO Conversion Activity of Ceria Nanocrystals," 2003.
    [82] D.-W. Tao, Z.-J. Jiang, J.-B. Chen, X.-G. Wang, Y. Li, and C.-W. Wang, "The evolution of resistive switching behaviors dependent on interface transition layers in Cu/Al/FTO nanostructure," Journal of Alloys and Compounds, vol. 827, 2020, doi: 10.1016/j.jallcom.2020.154270.
    [83] D. Kumar, R. Aluguri, U. Chand, and T. Y. Tseng, "Conductive bridge random access memory characteristics of SiCN based transparent device due to indium diffusion," Nanotechnology, vol. 29, no. 12, p. 125202, Mar 23 2018, doi: 10.1088/1361-6528/aaa939.
    [84] S. W. Han, C. J. Park, and M. W. Shin, "The role of Al atoms in resistive switching for Al/ZnO/Pt Resistive Random Access Memory (RRAM) device," Surfaces and Interfaces, vol. 31, 2022, doi: 10.1016/j.surfin.2022.102099.
    [85] S. Yan, H. Wang, J. Xu, and L. Yang, "Resistance Switching Behaviour and Properties of Ag/La0.5Mg0.5MnO3/p+-Si with Different Thicknesses of Resistance Films Fabricated through Sol—Gel Method," Journal of Wuhan University of Technology-Mater. Sci. Ed., vol. 34, no. 3, pp. 568-571, 2019, doi: 10.1007/s11595-019-2089-8.
    [86] S.-Y. Huang, T.-C. Chang, M.-C. Chen, S.-C. Chen, H.-P. Lo, H.-C. Huang, D.-S. Gan, S. M. Sze, and M.-J. Tsai, "Resistive switching characteristics of Sm2O3 thin films for nonvolatile memory applications," Solid-State Electronics, vol. 63, no. 1, pp. 189-191, 2011, doi: 10.1016/j.sse.2011.04.012.
    [87] K. J. Lee, L. W. Wang, T. K. Chiang, and Y. H. Wang, "Effects of Electrodes on the Switching Behavior of Strontium Titanate Nickelate Resistive Random Access Memory," Materials (Basel), vol. 8, no. 10, pp. 7191-7198, Oct 26 2015, doi: 10.3390/ma8105374.
    [88] Z. Yong, K.-M. Persson, M. Saketh Ram, G. D'Acunto, Y. Liu, S. Benter, J. Pan, Z. Li, M. Borg, A. Mikkelsen, L.-E. Wernersson, and R. Timm, "Tuning oxygen vacancies and resistive switching properties in ultra-thin HfO2 RRAM via TiN bottom electrode and interface engineering," Applied Surface Science, vol. 551, 2021, doi: 10.1016/j.apsusc.2021.149386.
    [89] J.-C. Wang, D.-Y. Jian, Y.-R. Ye, L.-C. Chang, and C.-S. Lai, "Characteristics of gadolinium oxide resistive switching memory with Pt–Al alloy top electrode and post metallization annealing," Journal of Physics D: Applied Physics, vol. 46, no. 27, 2013, doi: 10.1088/0022-3727/46/27/275103.
    [90] S. Mondal, J. L. Her, F. H. Ko, and T. M. Pan, "The Effect of Al and Ni Top Electrodes in Resistive Switching Behaviors of Yb2O3-Based Memory Cells," ECS Solid State Letters, vol. 1, no. 2, pp. P22-P25, 2012, doi: 10.1149/2.005202ssl.
    [91] Y.-S. Wu, M.-H. Tsai, and C.-L. Huang, "Resistive switching characteristics of sol-gel derived ZrCeOx thin films for nonvolatile memory applications," Materials Science and Engineering: B, vol. 277, 2022, doi: 10.1016/j.mseb.2022.115605.
    [92] K.-J. Lee, Y.-C. Chang, C.-J. Lee, L.-W. Wang, D.-W. Chou, T.-K. Chiang, and Y.-H. Wang, "Effects of Ni in Strontium Titanate Nickelate Thin Films for Flexible Nonvolatile Memory Applications," IEEE Transactions on Electron Devices, vol. 64, no. 5, pp. 2001-2007, 2017, doi: 10.1109/ted.2016.2637925.
    [93] H. Tang, X.-G. Tang, Y.-P. Jiang, Q.-X. Liu, W.-H. Li, and L. Luo, "Bipolar resistive switching characteristics of amorphous SrTiO3 thin films prepared by the sol-gel process," Journal of Asian Ceramic Societies, vol. 7, no. 3, pp. 298-305, 2019, doi: 10.1080/21870764.2019.1625499.

    無法下載圖示 校內:2028-07-25公開
    校外:2028-07-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE