簡易檢索 / 詳目顯示

研究生: 莊佳憲
Chuang, Chia-Hsien
論文名稱: 應力對矽酸鉿奈米薄膜的影響
Constraint effect of hafnium silicate films on silicon substrate
指導教授: 施權峰
Shih, Chuan-Feng
共同指導教授: 呂正傑
Leu, Ching-Chich
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 93
中文關鍵詞: 施加應力矽酸鉿二氧化鉿覆蓋層結晶性
外文關鍵詞: constraint, hafnium silicate, hafnium oxide, capping layer, crystallization
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究分成兩部分,第一部分為討論在無施加應力下,藉由改變矽酸鉿的成分比例及退火溫度來探討薄膜特性的變化。由實驗結果得知矽酸鉿薄膜在快速熱退火後,其結晶性會隨著鉿的成份比例降低而變差,而當薄膜摻雜高比例的矽時,其成分接近二氧化矽,故結晶所需溫度會提高很多。而且在預估成份比例為Hf30Si70的薄膜中,經穿透式電子顯微鏡的表面分析發現經1000℃快速熱退火60秒後其相分離的機制可能為成核生長(Nucleation and Growth) ; 但經950℃持溫60秒後其相分離的機制卻為離相分解(Spinodal Decomposition)。
    第二部分先討論應力施加於二氧化鉿薄膜的效應,再探討應力施加於矽酸鉿薄膜的作用。由實驗可得知無應力施加的試片在退火過程中,介面層成長伴隨壓應力的產生,為了釋放此應力將矽原子射出,在二氧化鉿表面形成一層薄薄的覆蓋層,而結晶上的差異主要為二氧化矽覆蓋層產生與否。
    接著探討應力施加於矽酸鉿薄膜,由實驗結果得知有施加應力的矽酸鉿薄膜其結晶性比無應力的佳,其主因亦為應力施加於矽酸鉿薄膜可以抑制介面層成長,同時抑制矽向表面擴散形成二氧化矽覆蓋層,使二氧化矽覆蓋層的來源只剩矽酸鉿薄膜相分離出的二氧化矽,可能導致覆蓋層變的更薄或覆蓋的不完全,讓覆蓋層無法有效地影響其結晶性。

    In this work, the effects of constrain stresses on the phase separation mechanism, microstructure and electrical properties in Hf-silicate thin films were studied. 7-nm-thick hafnium silicate dielectric films with HfO2 compositions between ~60% to ~10 mol% ((HfO2)x(SiO2)1-x, x = 0.6~0.1) were fabricated by radio-frequency magnetron sputtering. Flexural tensile and compression constraints were applied mechanically to the films on Si substrates, and the magnitude of the constrained strain on the substrate was varied by adjusting screws in holder. The substrates were bent mechanically through the holder into a circular section. As the constrained specimens were removed from the holder after deposition of the film, the substrates were fully recovered that yielded an equivalent but opposite stress to the films. The tetragonal HfO2 phase was formed upon a rapid thermal annealing treatment at 950℃ for 60s. The degree of crystallization of the constrained Hf-rich films was higher than the reference. Notably, the two opposite constrained stresses have similar influences on the crystallinity of Hf-rich silicate. Compared with previous report that showed two distinctly different phase separated microstructures, our study results was consistent with two limiting cases of microstructural evolution: nucleation/growth and spinodal decomposition. The film structure obtained by HRTEM of the HfxSi1-xO2 film with x=0.3 is consistent with the theory of spinodal decomposition after RTA at 950℃ for 60s in N2 gas. And the observed microstructure of the film with x=0.3 has phase separated by a nucleation and growth mechanism after RTA at 1000℃ for 60s in N2.

    摘要 I Extended Abstract II 誌謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 實驗目的 2 1-3 論文架構 2 第二章 材料介紹與理論基礎 3 2-1 MOS基礎理論 3 2-1-1 理想MOS二極體 3 2-1-2 理想MOS二極體C-V特性 6 2-1-3 MOS結構的缺陷型態及其影響 8 2-1-4 氧化層缺陷對電滯曲線方向的影響 11 2-2 高介電材料 13 2-2-1 高介電材料氧化鉿及矽酸鉿特性 15 2-2-2 相分離機制 16 2-2-3 離相分解 19 2-3 薄膜應力簡介 20 2-3-1 薄膜應力種類與計算 20 2-3-2 薄膜應力量測方式 21 2-4 矽酸鉿薄膜特性之文獻回顧 26 2-4-1 矽酸鉿薄膜特性探討 26 2-4-2 應力對高介電材料影響 27 第三章 實驗方法 29 3-1 實驗流程與簡介 29 3-1-1 矽基板的準備與清洗 29 3-1-2 應力施加於矽酸鉿之方式 33 3-1-3 氧化層製備流程 33 3-1-4 試片代號 36 3-1-5 氧化層之熱退火 37 3-2 薄膜物性分析之儀器介紹 38 3-2-1 橢圓偏光儀(Elliposmeter)分析 38 3-2-2 X光繞射儀(XRD)分析 39 3-2-3 霍式轉換紅外線光譜儀(FTIR)分析 40 3-2-4 高解析X光光電子能譜(XPS)分析 40 3-2-5 穿透式電子顯微鏡(TEM)分析 41 第四章 結果與討論 43 4-1 未施加應力之矽酸鉿薄膜 43 4-1-1 薄膜厚度量測及成分分析 43 4-1-2 矽酸鉿薄膜結晶特性分析 48 4-1-3 矽酸鉿薄膜相分離之探討 59 4-2 應力施加於二氧化鉿及矽酸鉿薄膜之影響 70 4-2-1 應力施加於二氧化鉿薄膜之探討 70 4-2-2 應力施加於矽酸鉿薄膜結晶特性分析 77 4-2-3 應力施加及覆蓋層作用之機制探討 82 第五章 結論 86 參考文獻 88

    [1] C. Claeys, E. Simoena, S. Put, G. Giusi, F. Crupi d, “Impact strain engineering on gate stack quality and reliability ” Solid-State Electronic, Vol. 52, 1115-1126 (2008)
    [2] S. M. Sze and Kwok K. Ng, “Physics of semiconductor devices”, Hoboken, N.J. : Wiley-Interscience, (2007)
    [3] B. E. Deal, “Standardized Terminology for Oxide Charge Associated with with Thermally Oxidized Silicon”, IEEE Trans. Electron Devices, ED-27, No. 3, 606 (1980)
    [4] U. Welzel, J. Ligot, P. Lamparter, A. C. Vermeulen and E. J. Mittemeijer, “Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction”, J. Appl. Cryst., Vol. 38, 1-29 (2005)
    [5] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Z. Yu, M. Zeitzoff, and J. C. S. Woo, “The impact of high-k gate dielectrics and metal gate electrodes on Sub-100 nm MOSFETs” , IEEE Trans. Electron Devices, Vol. 46, No. 7, 1537-1544 (1999)
    [6] M-H. Cho, Y. S. Roh, C. N. Whang, and K. Jeong, S. W. Nahm and D.-H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition”,
    Appl. Phys. Lett., Vol. 81, 472-474 (2002)
    [7] B. H. Lee, Y. Jeon, K. Zawadzki, W.-J. Qi, and J. Lee, “Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silicon”, Appl. Phys. Lett., Vol. 74, 3143 (1999)
    [8] J. Robertson, J. Vac. Sci. Technol. B18, 1785 (2000)
    [9] Jack C. Lee, “Ultra-thin gate dielectrics and High-k dielectrics”, IEEE EDS Vanguard Series of Independent Short Course, 202 (2001)
    [10] M. Balog, M. Schieber, M. Michiman, and S. Patai, “Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds”, Thin Solid Films, Vol. 41, 247-259 (1977)
    [11] A. Molchanova,and A. Rogozhin, “Electrical properties of ALD HfO2 (EOT 0.47 nm)”, Proc. of SPIE, Vol. 9440, 944004-1 (2015)
    [12] L. Kang, Y. Jeon, K. Onishi, B. H. Lee, W. J. Qi, R. Nieh, S. Gopalan, and J. C. Lee, “2000 Symposium on VLSI Technology”, IEEE Electronic Devices Society, Honolulu, 44 (2000)
    [13] S. Stemmer, Z. Chen, C. G. Lev, P. S. Lysaght, B. Foran, J. A. Gisby and J. R. Taylor, “Application of Metastable Phase Diagrams to Silicate Thin Films for Alternative Gate Dielectrics”, Jpn. J. Appl. Phys., Vol. 42, 3593-3597 (2003)
    [14] P. Lysaght, B. Foran, S. Stemmer, G. Bersuker, J. Bennett, R. Tichy , L. Larson and H. R. Huff, “Thermal response of MOCVD hafnium silicate”, Microelectronic Engineering, Vol. 69, 182-189 (2003)
    [15] 黃國瑋, “熱處理條件對氧化鉿與矽酸鉿薄膜特性的影響”, 國立成功大學電機工程研究所, 碩士論文 (2008)
    [16] C. N. R. Rao, K. J. Rao, “Phase Transitions in Solids”, McGraw-Hill, New York, (1978)
    [17] G. W. Cahn, Trans. Met. Soc. AIME, Vol. 242, 166 (1968)
    [18] J. E. Hilliard, “Phase Transformations”, ASM, 497-560, Chapman & Hall, London, (1970)
    [19] 汪建民,“材料分析”,中華材料科學學會
    [20] C.-H. Ma, J.-H. Huang, and Haydn Chena, “Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction”, Thin Solid Films Vol. 418, 73-78 (2002)
    [21] Noyan I. C., Jerome C. B., “Residual Stress: Measurement by Diffraction and Interpretation”, Springer Verlag, Ch6 (1987)
    [22] Anthony E. Ennos, “Stresses developed in optical film coatings”, Applied Optics, Vol. 5, 51 (1966)
    [23] W. Fang, H.-C. Tsai, C.-Y. Lo “Determining thermal expansion coefficients of thin films using micromachined cantilevers”, Sensors and Actuators, Vol 77, 21-27 (1999)
    [24] C. M. Drum, “TwymanGreen Interferometry for Measurements of Stresses in Thin Films on Optically Flat Silicon Substrates” Rev. Sci. Instrum., Vol 40, 853 (1969)
    [25] G. Gerald Stoney, “The Tension of Metallic Films Deposited by Electrolysis”, Proceedings of the Royal Society of London, Vol. 82, No. 553, 172-175 (1909)
    [26] E. Kobeda and E.A. Irene, “A measurement of intrinsic SiO2 film stress resulting from low temperature thermal oxidation of Si”, J. Vac, Sci. Technol, B4, 3 (1985)
    [27] S. Stemmera, Y. Li, B. Foran, P. S. Lysaght, S. K. Streiffer, P. Fuoss, and S. Seifert, “Grazing-incidence small angle x-ray scattering studies of phase separation in hafnium silicate films”, Appl. Phys. Lett., Vol. 83, No. 15, 3141 (2003)
    [28] M.-H. Choa, K. B. Chung, C. N. Whang, D. W. Lee and D.-H. Ko, “Phase separation and electronic structure of Hf-silicate film as a function
    of composition”, Appl. Phys. Lett., Vol. 87, 242906 (2005)
    [29] J. Liu, X. Wu, W. N. Lennard, D. Landheer, and M. W. C. Dharma-Wardana, “Surface-directed spinodal decomposition in the pseudobinary alloy (HfO2)x(SiO2)1−x”, J. Appl. Phys., Vol. 107, 123510 (2010)
    [30] Z. Ming, K. Nakajima, M. Suzuki, K. Kimura, M. Uematsu, K. Torii, S. Kamiyama, Y. Nara, and K. Yamada, “Si emission from the SiO2/Si interface during the growth of SiO2 in the HfO2/SiO2/Si structure”, Appl. Phys. Lett., Vol. 88, 153516 (2006)
    [31] C. F. Shih, C. Y. Hsiao, B. C. Chen, Y. C. Hsiao, and C. C. Leu, “Constraint Annealing of HfO2 Films on Silicon Substrate: Suppression of Si Outward Emission”, J. Am. Ceram. Soc., Vol. 96, No. 2, 376-378 (2013)
    [32] C. F. Shih, C. Y. Hsiao, Y. C. Hsiao, B. C. Chen, and C. C. Leu, “Evidence of change in crystallization behavior of thin HfO2 on Si: Effects of self-formed SiO2 capping layer”, Thin Solid Films, Vol. 556, 291-293 (2014)
    [33] J. Liu, X. Wu, W. N. Lennard, and D. Landheer, “Surface-directed spinodal decomposition in hafnium silicate thin films”, PHYSICAL REVIEW B, Vol. 80, 041403(R) (2009)
    [34] M. Zhao, K. Nakajima, M. Suzuki, K. Kimura, M. Uematsu, “Isotopic labeling study of the oxygen diffusion in HfO2/SiO2/Si”, Appl. Phys. Lett., Vol. 90, 133510 (2007)
    [35] L Khomenkova, X Portier, J Cardin and F Gourbilleau, “Thermal stability of high-k Si-rich HfO2 layers grown by RF magnetron sputtering”, Nanotechnology, Vol. 21, 285707 (2010)
    [36] M Perego, G Seguini, C Wiemer, M Fanciulli1, P-E Coulon and C Bonafos, “Si nanocrystal synthesis in HfO2/SiO2/HfO2 multilayer structures”, Nanotechnology, Vol. 21, 055606 (2010)
    [37] M. A. Quevedo-Lopez, J. J. Chambers, M. R. Visokay, A. Shanware, and L. Colombo, “Thermal stability of hafnium–silicate and plasma-nitrided hafnium silicate films studied by Fourier transform infrared spectroscopy”, Appl. Phys. Lett., Vol. 87, 012902 (2005)
    [38] C. T. Kirk, “Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica”, Phys. Rev. B, Vol. 38, 1255 (1988)
    [39] P. Lange, “Evidence for disorder-induced vibrational mode coupling in thin amorphous SiO2 films”, J. Appl. Phys., Vol. 66, 201 (1989)
    [40] J. E. Olsen, and F. Shimura, “Infrared reflection spectroscopy of the SiO2-silicon interface”, J. Appl. Phys., Vol. 66, 1353-1358 (1989)
    [41] Nguyen NV, Davydov AV, Chandler-Horowitz D, and Frank MM, “Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon”, Appl. Phys. Lett., Vol. 87, 192903 (2005)
    [42] V. Rangarajan, H. Bhandari, T. M. Klein, “Comparison of hafnium silicate thin films on silicon (100) deposited using thermal and plasma enhanced metal organic chemical vapor deposition”, Thin Solid Films, Vol. 419, 1 (2002)
    [43] C. Driemeier, E. P. Gusev, and I. J. Baumvol, “Room temperature interactions of water vapor with HfO2 films on Si”, Appl. Phys. Lett., Vol. 88, 201901 (2006)
    [44] Y. Hoshino, Y. Kido, K. Yamamoto, S. Hayashi, and M. Niwa, “Characterization and control of the HfO2/Si(001) interfaces”, Appl. Phys. Lett., Vol. 81, 2650 (2002)
    [45] 蕭有志, “應力與覆蓋層效應對於二氧化鉿薄膜的影響”, 國立成功大學電機工程研究所, 碩士論文 (2013)
    [46] M.-Y. Ho and H. Gong, “Morphology and crystallization kinetics in HfO2 thin films grown by atomic layer deposition”, J. Appl. Phys., Vol. 93, No. 3, 1477 (2003)

    下載圖示 校內:2017-08-24公開
    校外:2017-08-24公開
    QR CODE