簡易檢索 / 詳目顯示

研究生: 黃仲楷
Huang, Zhong-Kai
論文名稱: 摻雜OA-Fe3O4於PC61BM層對有機鈣鈦礦太陽能電池光電轉換效率影響之研究
Study on doping OA-Fe3O4 nanoparticles in PC61BM layer for organic perovskite based solar cells
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 69
中文關鍵詞: 有機鈣鈦礦太陽能電池超順磁性四氧化三鐵磁性奈米粒子
外文關鍵詞: Organic based perovskite solar cells, Superparamagnetic OA-Fe3O4 MPs
相關次數: 點閱:172下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈣鈦礦太陽能電池已經成為太陽能電池的新寵兒,歸因於極高的光電轉換效率,吸引全世界的研究團隊爭相研究,從2009年的3.8 %由日本 Miyasaka 團隊首先將CH3NH3PbI3鈣鈦礦材料用於染料敏化太陽能電池結構中,用鈣鈦礦材料取代原先用於光電轉換的小分子染料,並搭配二氧化鈦及液態電解液質,至2014年由韓國研究團隊KRICT將鈣鈦礦太陽能電池光電轉換效率提升到20 %,發展的程度已經超越其他的薄膜太陽能電池,如此高的光電轉換效率因鈣鈦礦獨特的光電特性,包含長的載子擴散長度(Long carrier diffusion length),有適合的能帶(Appropriate energy gap),高的吸收係數(High absorption coefficients),優異的載子遷移率(Excellent carrier mobility ),我們以兩步旋轉塗布法(Two-step spin coating)製作出結構為ITO/PEDOT:PSS/Perovskite/PC61BM/BCP/Al有機型鈣鈦礦太陽能電池,其開路電壓為0.91 V,短路電流密度為16.4 mA/cm2,填充因子為61 %,光電轉換效率為9.1 %,並研究OA-Fe3O4摻雜於PC61BM層對電性之影響,實驗結果為摻雜濃度為30 %時開路電壓為0.93 V,短路電流密度為18.5 mA/cm2,填充因子為63 %,光電轉換效率為10.8 %提升了近19 %。

    In 2009, Miyasaka et al. used CH3NH3PbI3 to replace organic dyes in dye-sensitized solar cells (DSSCs) for the first, where the mesoporous titanium oxide (TiO2) and a liquid electrolyte were used. Power conversion efficiency (PCE) of 3.8 % was achieved. Power conversion efficiency (PCE) close to 20 % has been achieved in both mesoporous structure devices as well as photovoltaic heterojunction (PHJ) devices. The highest certified efficiency has reached 20.1 % (non-stabilized) by the KRICT in late 2014. It took less than five years for PCE of perovskite solar cells to increase from 3.8 % to above 20 %, while it takes several decades for other kinds of inorganic solar cells to achieve this and most photovoltaic materials never reach 20 % efficiency. The perovskite solar cells has attracted tremendous research attention due to its unique optical properties such as long carrier diffusion lengths, appropriate energy gap, high absorption coefficients , excellent carrier mobility. We successfully demonstrated that the organic based perovskite solar cell whose structure is ITO/PEDOT:PSS/Perovskite/PC61BM/BCP/Al gave a Voc of 0.91 V, a Jsc of 16.4 mA/cm2, a FF of 61 %, a PCE of 9.1 % via two-step spin coating process. After fabricating the devices in stable process, we started to study on doping OA-Fe3O4 nanoparticles in PC61BM layer. We got the device gave a Voc of 0.93 V, a Jsc of 18.5 mA/cm2, a FF of 63 %, a PCE of 10.8 % by doping 30 wt% OA-Fe3O4 in PC61BM. The power conversion efficiency (PCE) has increased about 19 % after doping 30 wt% OA-Fe3O4 nanoparticles in PC61BM layer.

    中文摘要 I Abstract II Study on doping OA-Fe3O4 nanoparticles in PC61BM layer for organic perovskite based solar cells III 目錄 X 圖目錄 XIV 表目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 太陽能發展史 2 1-3 太陽光譜 4 1-4 太陽能電池之光電轉換原理 6 1-5 各層材料的特性 7 1-5-1 電洞傳輸層 PEDOT:PSS 7 1-5-2 主動層 鈣鈦礦(Perovskite) 8 1-5-3 電子受體 PC61BM 9 1-5-4 電洞阻擋層 BCP 10 1-6 四氧化三鐵晶格結構 11 1-7鈣鈦礦太陽能電池文獻回顧 12 1-8 研究動機 15 第二章 太陽能電池理論基礎 17 2-1 鈣鈦礦太陽能電池工作原理 17 2-1-1 主動層吸收到入射光 18 2-1-2 激子解離成電子電洞 18 2-1-3 電荷由兩端電極收集 18 2-2 鈣鈦礦太陽能電池元件特性分析 18 2-2-1 開路電壓Voc(Open Voltage) 19 2-2-2 短路電流密度 Jsc(Short-circuit current density) 20 2-2-3 填充因子 FF(Fill factor) 20 2-2-4 光電轉換效率PCE(Power conversion efficiency) 21 2-2-5 並聯電阻Rsh(Shunt resistance) 21 2-2-6 串聯電阻Rs(Series resistance) 22 2-3 磁性材料介紹 22 2-3-1 順磁性 23 2-3-2 反磁性 23 2-3-3 鐵磁性 24 2-3-4 反鐵磁性 24 第三章 鈣鈦礦太陽能電池的製程實驗步驟與儀器量測 25 3-1 鈣鈦礦太陽能電池元件的製程 25 3-1-1 黃光製作 25 3-1-2 元件製程 26 3-1-3 元件封裝 28 3-2 油酸包覆的四氧化三鐵奈米粒子 29 3-3 儀器介紹 30 3-3-1 元件效率量測機台 30 3-3-2 紫外光-可見光光譜儀 (UV-Visible spectrophotometer) 31 3-3-3 高解析掃描式電子顯微鏡 (Ultrahigh Resolution Scanning Electron Microscope) 32 3-3-4 多功能X光薄膜繞射儀(Multipurpose X-Ray Thin-Film Diffractometer) 33 第四章 實驗結果與討論 35 4-1 鈣鈦礦太陽能電池元件之兩步法最佳化 35 4-1-1 鈣鈦礦太陽能電池元件各層結構的基本設定 35 4-1-2 使用銅管持溫旋轉塗布PbI2/DMF改善結晶性 39 4-1-3 退火過程中多增加異丙醇清洗改善薄膜均勻性 42 4-1-4 蒸鍍BCP(電洞阻擋層)鈍化表面 46 4-1-5 CH3NH3I/2-propanol濃度及PC61BM轉速的最佳化 48 4-2 摻雜OA-Fe3O4於PC61BM對元件光電轉換效率之影響 56 第五章 結論與未來規劃 66 5-1 結論 66 5-2 未來規劃 66 參考文獻 68   圖目錄 圖1-2 薄膜太陽能電池效率演進圖[1] 3 圖1-3-1 大氣質量(Air Mass)示意圖[2] 5 圖1-3-2 太陽光輻射的波長分布圖[2] 5 圖1-3-3 大氣質量與單位面積入射光功率的對照圖[3] 6 圖1-5-1 PEDOT:PSS分子結構圖[4] 7 圖1-5-2 鈣鈦礦結構圖[5] 9 圖1-5-3 PC61BM結構圖[6] 10 圖1-5-4 BCP結構圖[7] 10 圖1-6-1 四氧化三鐵結構圖 11 圖1-6-2 四氧化三鐵晶格圖 11 圖1-7-1鈣鈦礦太陽能電池效率發展圖 13 圖1-7-2 鈣鈦礦太陽能電池結構分類[8] 15 圖2-1-1 D/A Interface 17 圖2-2-1 太陽能電池照光與沒照光的I-V曲線[13] 20 圖2-2-3 I-V曲線及填充因子示意圖[14] 21 圖2-2-6 串並聯電阻示意圖[13] 22 圖2-2-7 太陽能電池等效電路圖[14] 22 圖3-1-1 元件示意圖(藍色為ITO電極,銀色為Al電極) 27 圖3-1-2 元件基本結構示意圖 28 圖3-1-3 封裝後的元件示意圖 29 圖3-2 油酸包覆的四氧化三鐵特性圖[16] 30 圖3-3-2 UV-Visible光譜儀 31 圖3-3-3 顯微電鏡 32 圖3-3-4 X光繞射儀 33 圖4-1-1 初始元件結構示意圖 36 圖4-1-2 初始元件各層參數設定圖 37 圖4-1-3 PbI2/DMF塗布過多導致照光面有液體殘留圖 37 圖4-1-4 初始元件電性參數圖 38 圖4-1-5 試片有光圈與無光圈的比較圖 39 圖4-1-6 PbI2在毛細玻璃管析出圖 40 圖4-1-7 毛細玻璃管使用銅管持溫90度 40 圖4-1-8 在塗布PbI2時使用銅管持溫毛細玻璃管90度元件電性圖 41 圖4-1-9 SEM分析鈣鈦礦膜(左為沒有使用IPA清洗,右為使用IPA清洗) 43 圖4-1-10 在退火過程中使用IPA清洗流程圖[21] 43 圖4-1-11 經過IPA清洗(右邊兩塊)與沒有IPA清洗(左邊兩塊)的試片 44 圖4-1-12 經過IPA清洗(W IPA)與沒有清洗(W/O IPA)的元件電性參數圖 44 圖4-1-13 退火10/20/30分後使用IPA清洗再退火50/40/30 分元件電性參數圖 45 圖4-1-14 BCP不同厚度的元件電性參數圖 47 圖4-1-15 不同Mai濃度的SEM分析圖(Top-view) 50 圖4-1-16 不同Mai濃度的SEM分析圖(Cross-section) 51 圖4-1-17 不同Mai(mg/ml)濃度的XRD分析圖 52 圖4-1-18 不同Mai濃度(mg/ml)的元件電性參數圖 52 圖4-1-19 不同Mai濃度(mg/ml)的I-V曲線圖 53 圖4-1-20 不同Mai濃度(25-55 mg/ml)的吸收曲線 54 圖4-1-21 不同PC61BM轉速試片的外觀(左為1000 rpm,右為2000 rpm) 54 圖4-1-22 改善後的元件各層參數圖 55 圖4-1-23 參考片(Reference)的I-V曲線及電性參數 55 圖4-2-1 最佳化元件各層的能階示意圖[10] 57 圖4-2-2 摻雜不同重量百分濃度的OA-Fe3O4於PC61BM元件電性參數圖 58 圖4-2-3 摻雜不同重量百分濃度的OA-Fe3O4於PC61BM的I-V曲線 59 圖4-2-4 摻雜30%重量百分濃度的OA-Fe3O4於PC61BM入射光示意圖 61 圖4-2-5 摻雜50%重量百分濃度的OA-Fe3O4於PC61BM入射光示意圖 61 圖4-2-6 優化元件電性參數過程圖 65 表目錄 表4-1-4 初始元件電性參數表 38 表4-1-8 在塗布PbI2時使用銅管持溫毛細玻璃管90度元件電性表 41 表4-1-12 經過IPA清洗(W IPA)與沒有清洗(W/O IPA)的元件電性參數表 45 表4-1-13 退火10/20/30分後使用IPA清洗再退火50/40/30 分元件電性參數表 46 表4-1-14 BCP不同厚度的元件電性參數表 48 表4-1-18 不同Mai濃度(mg/ml)的元件電性參數表 53 表4-2-2 摻雜不同重量百分濃度的OA-Fe3O4於PC61BM元件電性參數表 57 表4-2-3 優化元件電性參數過程表 65

    [1] K. Leo, "Perovskite photovoltaics: Signs of stability," Nat Nanotechnol, vol. 10, pp. 574-5, Jul 2015.
    [2] P.W. Atkins, Kurzlehrbuch Physikalische Chemie, 2001.
    [3] M.P. Thekaekara, the solar cell constant and solar spectrum measurement from a research aircraft, 1970.
    [4] A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova,and R. A. J. Janssen, "Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol,"Organic Electronics, vol. 9, pp. 727-734, 2008.
    [5] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, pp. 395-8, Sep 19 2013.
    [6] S. Cook, H. Ohkita, Y. Kim, J. J. Benson-Smith, D. D. C. Bradley, and J. R. Durrant, "A photophysical study of PCBM thin films," Chemical Physics Letters, vol. 445, pp. 276-280, 2007.
    [7] Richard Dylan Cooper, "Effect of Interlayer Insertion into Bilayer Organic Solar Cells," Senior Honors Thesis, May 2011.
    [8] Z. Xiao, Y. Yuan, Q. Wang, Y. Shao, Y. Bai, Y. Deng, et al., "Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells," Materials Science and Engineering: R: Reports, vol. 101, pp. 1-38, 2016.
    [9] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, et al., "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers," Energy & Environmental Science, vol. 7, p. 2619, 2014.
    [10] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, et al., "CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells," Adv Mater, vol. 25, pp. 3727-32, Jul 19 2013.
    [11] B. C. Thompson and J. M. Frechet, "Polymer-fullerene
    composite solar cells," Angew Chem Int Ed Engl, vol. 47, pp. 58-77, 2008.
    [12] Lewis M. Fraas, Larry D. Partain, "Solar Cells and Their Applications", Aug 2010.
    [13] A. Moliton and J. M. Nunzi, How to model the behaviour of organic photovoltaic cells. Polymer international, 2006. 55(6): p.583-600.
    [14] M.A. Green, Solar Cells: Operating Principles, Technology, and System Application, 1982.
    [15] H.P. Meyers, H.P. Myers, "Introductory Solid State Physics, Second Edition", Apr 1997.
    [16] Taiwan Nanocrystals Inc. Product of oil-based magnetic iron oxide nanoparticles.
    [17] X. Huang, K. Wang, C. Yi, T. Meng, and X. Gong, "Efficient Perovskite Hybrid Solar Cells by Highly Electrical Conductive PEDOT:PSS Hole Transport Layer," Advanced Energy Materials, vol. 6, pp. n/a-n/a, 2016.
    [18] Q. Hao, Y. Chu, X. Zheng, Z. Liu, L. Liang, J. Qi, et al., "Preparation of planar CH3NH3PbI3 thin films with controlled size using 1-ethyl-2-pyrrolidone as solvent," Journal of Alloys and Compounds, vol. 671, pp. 11-16, 2016.
    [19] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, et al., "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers," Energy & Environmental Science, vol. 7, p. 2619, 2014.
    [20] Q. Hao, Y. Chu, X. Zheng, Z. Liu, L. Liang, J. Qi, et al., "Preparation of planar CH3NH3PbI3 thin films with controlled size using 1-ethyl-2-pyrrolidone as solvent," Journal of Alloys and Compounds, vol. 671, pp. 11-16, 2016.
    [21] M. I. El-Henawey, R. S. Gebhardt, M. M. El-Tonsy, and S. Chaudhary, "Organic solvent vapor treatment of lead iodide layers in the two-step sequential deposition of CH3NH3PbI3-based perovskite solar cells," J. Mater. Chem. A, vol. 4, pp. 1947-1952, 2016.
    [22] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, "Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process," Energy Environ. Sci., vol. 7, pp. 2359-2365, 2014.
    [23] Q. Dong, et al. Science 347 (2015) 967–970.
    [24] D. Shi, et al. Science 347 (2015) 519–522.
    [25] J. Xu, et al. Nat. Commun. 6 (2015) 7081.

    下載圖示 校內:2017-11-11公開
    校外:2019-11-11公開
    QR CODE