| 研究生: |
黃仲楷 Huang, Zhong-Kai |
|---|---|
| 論文名稱: |
摻雜OA-Fe3O4於PC61BM層對有機鈣鈦礦太陽能電池光電轉換效率影響之研究 Study on doping OA-Fe3O4 nanoparticles in PC61BM layer for organic perovskite based solar cells |
| 指導教授: |
施權峰
Shih, Chuan-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 有機鈣鈦礦太陽能電池 、超順磁性四氧化三鐵磁性奈米粒子 |
| 外文關鍵詞: | Organic based perovskite solar cells, Superparamagnetic OA-Fe3O4 MPs |
| 相關次數: | 點閱:172 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦太陽能電池已經成為太陽能電池的新寵兒,歸因於極高的光電轉換效率,吸引全世界的研究團隊爭相研究,從2009年的3.8 %由日本 Miyasaka 團隊首先將CH3NH3PbI3鈣鈦礦材料用於染料敏化太陽能電池結構中,用鈣鈦礦材料取代原先用於光電轉換的小分子染料,並搭配二氧化鈦及液態電解液質,至2014年由韓國研究團隊KRICT將鈣鈦礦太陽能電池光電轉換效率提升到20 %,發展的程度已經超越其他的薄膜太陽能電池,如此高的光電轉換效率因鈣鈦礦獨特的光電特性,包含長的載子擴散長度(Long carrier diffusion length),有適合的能帶(Appropriate energy gap),高的吸收係數(High absorption coefficients),優異的載子遷移率(Excellent carrier mobility ),我們以兩步旋轉塗布法(Two-step spin coating)製作出結構為ITO/PEDOT:PSS/Perovskite/PC61BM/BCP/Al有機型鈣鈦礦太陽能電池,其開路電壓為0.91 V,短路電流密度為16.4 mA/cm2,填充因子為61 %,光電轉換效率為9.1 %,並研究OA-Fe3O4摻雜於PC61BM層對電性之影響,實驗結果為摻雜濃度為30 %時開路電壓為0.93 V,短路電流密度為18.5 mA/cm2,填充因子為63 %,光電轉換效率為10.8 %提升了近19 %。
In 2009, Miyasaka et al. used CH3NH3PbI3 to replace organic dyes in dye-sensitized solar cells (DSSCs) for the first, where the mesoporous titanium oxide (TiO2) and a liquid electrolyte were used. Power conversion efficiency (PCE) of 3.8 % was achieved. Power conversion efficiency (PCE) close to 20 % has been achieved in both mesoporous structure devices as well as photovoltaic heterojunction (PHJ) devices. The highest certified efficiency has reached 20.1 % (non-stabilized) by the KRICT in late 2014. It took less than five years for PCE of perovskite solar cells to increase from 3.8 % to above 20 %, while it takes several decades for other kinds of inorganic solar cells to achieve this and most photovoltaic materials never reach 20 % efficiency. The perovskite solar cells has attracted tremendous research attention due to its unique optical properties such as long carrier diffusion lengths, appropriate energy gap, high absorption coefficients , excellent carrier mobility. We successfully demonstrated that the organic based perovskite solar cell whose structure is ITO/PEDOT:PSS/Perovskite/PC61BM/BCP/Al gave a Voc of 0.91 V, a Jsc of 16.4 mA/cm2, a FF of 61 %, a PCE of 9.1 % via two-step spin coating process. After fabricating the devices in stable process, we started to study on doping OA-Fe3O4 nanoparticles in PC61BM layer. We got the device gave a Voc of 0.93 V, a Jsc of 18.5 mA/cm2, a FF of 63 %, a PCE of 10.8 % by doping 30 wt% OA-Fe3O4 in PC61BM. The power conversion efficiency (PCE) has increased about 19 % after doping 30 wt% OA-Fe3O4 nanoparticles in PC61BM layer.
[1] K. Leo, "Perovskite photovoltaics: Signs of stability," Nat Nanotechnol, vol. 10, pp. 574-5, Jul 2015.
[2] P.W. Atkins, Kurzlehrbuch Physikalische Chemie, 2001.
[3] M.P. Thekaekara, the solar cell constant and solar spectrum measurement from a research aircraft, 1970.
[4] A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova,and R. A. J. Janssen, "Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol,"Organic Electronics, vol. 9, pp. 727-734, 2008.
[5] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, pp. 395-8, Sep 19 2013.
[6] S. Cook, H. Ohkita, Y. Kim, J. J. Benson-Smith, D. D. C. Bradley, and J. R. Durrant, "A photophysical study of PCBM thin films," Chemical Physics Letters, vol. 445, pp. 276-280, 2007.
[7] Richard Dylan Cooper, "Effect of Interlayer Insertion into Bilayer Organic Solar Cells," Senior Honors Thesis, May 2011.
[8] Z. Xiao, Y. Yuan, Q. Wang, Y. Shao, Y. Bai, Y. Deng, et al., "Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells," Materials Science and Engineering: R: Reports, vol. 101, pp. 1-38, 2016.
[9] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, et al., "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers," Energy & Environmental Science, vol. 7, p. 2619, 2014.
[10] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, et al., "CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells," Adv Mater, vol. 25, pp. 3727-32, Jul 19 2013.
[11] B. C. Thompson and J. M. Frechet, "Polymer-fullerene
composite solar cells," Angew Chem Int Ed Engl, vol. 47, pp. 58-77, 2008.
[12] Lewis M. Fraas, Larry D. Partain, "Solar Cells and Their Applications", Aug 2010.
[13] A. Moliton and J. M. Nunzi, How to model the behaviour of organic photovoltaic cells. Polymer international, 2006. 55(6): p.583-600.
[14] M.A. Green, Solar Cells: Operating Principles, Technology, and System Application, 1982.
[15] H.P. Meyers, H.P. Myers, "Introductory Solid State Physics, Second Edition", Apr 1997.
[16] Taiwan Nanocrystals Inc. Product of oil-based magnetic iron oxide nanoparticles.
[17] X. Huang, K. Wang, C. Yi, T. Meng, and X. Gong, "Efficient Perovskite Hybrid Solar Cells by Highly Electrical Conductive PEDOT:PSS Hole Transport Layer," Advanced Energy Materials, vol. 6, pp. n/a-n/a, 2016.
[18] Q. Hao, Y. Chu, X. Zheng, Z. Liu, L. Liang, J. Qi, et al., "Preparation of planar CH3NH3PbI3 thin films with controlled size using 1-ethyl-2-pyrrolidone as solvent," Journal of Alloys and Compounds, vol. 671, pp. 11-16, 2016.
[19] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, et al., "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers," Energy & Environmental Science, vol. 7, p. 2619, 2014.
[20] Q. Hao, Y. Chu, X. Zheng, Z. Liu, L. Liang, J. Qi, et al., "Preparation of planar CH3NH3PbI3 thin films with controlled size using 1-ethyl-2-pyrrolidone as solvent," Journal of Alloys and Compounds, vol. 671, pp. 11-16, 2016.
[21] M. I. El-Henawey, R. S. Gebhardt, M. M. El-Tonsy, and S. Chaudhary, "Organic solvent vapor treatment of lead iodide layers in the two-step sequential deposition of CH3NH3PbI3-based perovskite solar cells," J. Mater. Chem. A, vol. 4, pp. 1947-1952, 2016.
[22] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, "Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process," Energy Environ. Sci., vol. 7, pp. 2359-2365, 2014.
[23] Q. Dong, et al. Science 347 (2015) 967–970.
[24] D. Shi, et al. Science 347 (2015) 519–522.
[25] J. Xu, et al. Nat. Commun. 6 (2015) 7081.