簡易檢索 / 詳目顯示

研究生: 王聖雄
Wang, Sheng-Xiong
論文名稱: 採用OpenFOAM於紊流平板邊界層模擬之研究
A study on turbulent flat plate boundary layer simulation using OpenFOAM
指導教授: 吳毓庭
Wu, Yu-Ting
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 33
中文關鍵詞: 開源軟體OpenFOAM紊流模型源項
外文關鍵詞: Open source software, OpenFOAM, Turbulence models, Source term
相關次數: 點閱:57下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用開源軟體OpenFOAM 模擬大氣邊界層流動,將會依序介紹流場初始條件、邊界條件與源項之設定,並且選擇 LES 模型中的WALE model 與 Smagorinsky model 作為紊流模型,將二者結果相互比較之外,也與前人使用Ansys Fluent之研究成果做比對。主要觀察的結果為幾項紊流特性,分別為半對數尺度之無因次化平均流向速度,平均速度、動量通量、紊流強度隨垂直高度之變化以及功率頻譜。
    雖然本研究之成果沒有達到預期的趨勢,但是可以發現WALE model 在壁面附近的渦流行為表現較Smagorinsky model 敏感,再來,地面的邊界條件需要再嘗試其他類型的邊界,目前設置的邊界為無滑移條件(no-Slip),模擬結果不如預期,所以開始尋找相關資料查看可能的原因後,發現也許可以利用剪應力邊界的效應,去達成紊流接近地面時,會是存在擾動量且數值是較大的情況,在套裝軟體中,有圖形介面明確顯示輸入剪應力數值之位置,可以是常數之數值,也可以是自行撰寫程式後匯入軟體內。最後, OpenFOAM計算的時間比套裝軟體快約兩倍以上的時間,因為在套裝軟體有圖形介面之關係,會影響模擬計算之速度。在此之後,套裝軟體和OpenFOAM進行模擬之選擇時,若需要盡快研究結果的話,可以選擇OpenFOAM作為執行模擬的軟體。

    In this study, the open source software OpenFOAM is used to simulate the flow of the atmospheric boundary layer. The initial conditions, boundary conditions and source terms of the flow field will be introduced in sequence, and the WALE model and the Smagorinsky model in the LES model will be selected as the turbulence models, and the results of the two will be used. In addition to comparing with each other, it is also compared with the previous research results using Ansys Fluent. The main observed results are several turbulent characteristics, namely, dimensionless mean flow velocity on a semi-log scale, mean velocity, momentum flux, turbulence intensity versus vertical height, and power spectrum.
    Although the results of this study didn’t meet the expected trend, it can be found that the vortex behavior of the WALE model near the wall is more sensitive than the Smagorinsky model. Furthermore, the boundary conditions of the ground need to try other types of boundaries. The boundary currently set is no-slip The simulation result is not as expected, so after starting to look for the relevant data to check the possible reasons, it is found that the effect of the shear stress boundary may be used to achieve the turbulent flow close to the ground, there will be a disturbance and the value is In larger cases, in the packaged software, there is a graphical interface that clearly displays the position of the input shear stress value, which can be a constant value, or it can be imported into the software after writing a program by itself. Finally, the calculation time of OpenFOAM is about twice faster than that of the package software, because the relationship between the graphical interface in the package software will affect the speed of simulation calculation. After that, when choosing between the package software and OpenFOAM for simulation, if you need to study the results as soon as possible, you can choose OpenFOAM as the software to perform the simulation.

    摘要 i Extended Abstract ii 誌謝 v 目錄 vii 表目錄 x 圖目錄 xi 第1章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 動機與目的 4 1-4 研究架構 4 第2章 理論和數值方法 6 2-1 流場統御方程式 6 2-2 大氣邊界層流之紊流特性 7 2-2-1 平均流向速度 7 2-2-2 紊流強度 9 2-2-3 頻譜 9 2-3 數值方法 10 2-3-1 有限體積法 10 2-3-2 PISO算法 11 第3章 數值模型與建立 13 3-1 模擬工具 13 3-1-1 模型建立 13 3-1-3 邊界條件與初始條件 15 3-1-2 源項(source term) 17 3-2 紊流模型 18 3-2-1 Large Eddy Simulation(LES)Model 19 3-2-2 Subgrid Scale(SGS)Models 21 第4章 結果與討論 22 4-1 發展中流場之紊流特性 22 4-1-1 半對數尺度之無因次化平均流向輪廓 23 4-1-2 平均速度隨高度變化之結果與其他軟體之比較 24 4-1-3 動量通量之結果與其他軟體之比較 24 4-1-4 紊流強度之結果 25 4-1-5 頻譜之結果比較 25 4-2 類穩態流場之紊流特性 26 4-2-1 半對數尺度之無因次化平均流向輪廓 27 4-2-2 平均速度隨高度變化之結果與其他軟體之比較 27 4-2-3 動量通量之結果與其他軟體之比較 28 4-2-4 紊流強度之結果 28 4-2-5 頻譜之結果比較 29 第5章 結論 30 參考文獻 31

    [1] Porté-Agel, Fernando, et al. "Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms." Journal of Wind Engineering and Industrial Aerodynamics 99.4 (2011): 154-168.
    [2] Abkar, Mahdi, and Fernando Porté-Agel. "The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms." Energies 6.5 (2013): 2338-2361.
    [3] Stull, Roland B. An introduction to boundary layer meteorology. Vol. 13. Springer Science & Business Media, 1988.
    [4] Iyengar, Arun KS, and Cesar Farell. "Experimental issues in atmospheric boundary layer simulations: roughness length and integral length scale determination." Journal of Wind Engineering and Industrial Aerodynamics 89.11-12 (2001): 1059-1080.
    [5] Ho, Yat-Kiu, Chun-Ho Liu, and Man Sing Wong. "Preliminary study of the parameterisation of street-level ventilation in idealised two-dimensional simulations." Building and Environment 89 (2015): 345-355.
    [6] Kunkel, Gary J., and Ivan Marusic. "Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow." Journal of Fluid Mechanics 548 (2006): 375-402.
    [7] De Angelis, V., P. Lombardi, and S. Banerjee. "Direct numerical simulation of turbulent flow over a wavy wall." Physics of Fluids 9.8 (1997): 2429-2442.
    [8] Eghdami, Masih, Shanti Bhushan, and Ana P. Barros. "Direct numerical simulations to investigate energy transfer between meso-and synoptic scales." Journal of the Atmospheric Sciences 75.4 (2018): 1163-1171.
    [9] Balogh, Miklós, Alessandro Parente, and Carlo Benocci. "RANS simulation of ABL flow over complex terrains applying an Enhanced k-ε model and wall function formulation: Implementation and comparison for fluent and OpenFOAM." Journal of wind engineering and industrial aerodynamics 104 (2012): 360-368.
    [10] Deardorff, James W. "Numerical investigation of neutral and unstable planetary boundary layers." Journal of Atmospheric Sciences 29.1 (1972): 91-115.
    [11] Moeng, Chin-Hoh. "A large-eddy-simulation model for the study of planetary boundary-layer turbulence." Journal of the Atmospheric Sciences 41.13 (1984): 2052-2062.
    [12] Porté-Agel, Fernando, Charles Meneveau, and Marc B. Parlange. "A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer." Journal of Fluid Mechanics 415 (2000): 261-284.
    [13] Stoll, Rob, and Fernando Porté‐Agel. "Dynamic subgrid‐scale models for momentum and scalar fluxes in large‐eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain." Water Resources Research 42.1 (2006).
    [14] Stoll, Rob, and Fernando Porté-Agel. "Effect of roughness on surface boundary conditions for large-eddy simulation." Boundary-Layer Meteorology 118.1 (2006): 169-187.
    [15] Bou-Zeid, Elie, Charles Meneveau, and Marc Parlange. "A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows." Physics of fluids 17.2 (2005): 025105.
    [16] Görlach, Agnes, et al. "Reactive oxygen species, nutrition, hypoxia and diseases: problems solved?." Redox biology 6 (2015): 372-385.
    [17] Mentzoni, Fredrik, et al. "Numerical modeling of turbulence above offshore helideck–Comparison of different turbulence models." Journal of Wind Engineering and Industrial Aerodynamics 141 (2015): 49-68.
    [18] Monteagudo, J. E. P., and Abbas Firoozabadi. "Control‐volume method for numerical simulation of two‐phase immiscible flow in two‐and three‐dimensional discrete‐fractured media." Water resources research 40.7 (2004).
    [19] Temam, Roger. Navier-Stokes equations: theory and numerical analysis. Vol. 343. American Mathematical Soc., 2001.
    [20] Stull, Roland B. An introduction to boundary layer meteorology. Vol. 13. Springer Science & Business Media, 1988.
    [21] Pope, Stephen B., and Stephen B. Pope. Turbulent flows. Cambridge university press, 2000.
    [22] Issa, Raad I. "Solution of the implicitly discretised fluid flow equations by operator-splitting." Journal of computational physics 62.1 (1986): 40-65.
    [23] J. Oliveira, Raad I. Issa, Paulo. "An improved PISO algorithm for the computation of buoyancy-driven flows." Numerical Heat Transfer, Part B: Fundamentals 40.6 (2001): 473-493.
    [24] Smagorinsky, Joseph. "General circulation experiments with the primitive equations: I. The basic experiment." Monthly weather review 91.3 (1963): 99-164.
    [25] Nicoud, Franck, and Frédéric Ducros. "Subgrid-scale stress modelling based on the square of the velocity gradient tensor." Flow, turbulence and Combustion 62.3 (1999): 183-200.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE