簡易檢索 / 詳目顯示

研究生: 吳綜瑞
Wu, Tsung-Jui
論文名稱: 高壓直流傳輸系統連接於電力系統之功率潮流控制與穩定度分析
Power Flow Control and Stability Analysis of a High-Voltage Direct Current Transmission System Connected to Power Systems
指導教授: 王醴
wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 252
中文關鍵詞: 離岸式風場海流場高壓直流傳輸系統
外文關鍵詞: Offshore wind farm, marine-current farm, HVDC
相關次數: 點閱:152下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係以高壓直流傳輸系統連接於兩電網間以及連接於一個整合大型離岸式風場與海流場和岸上電網間,利用此兩種架構研究高壓直流傳輸系統對功率潮流、穩定度以及動態響應之影響。本論文在三相平衡系統之條件下,採用交直軸等效電路模型來建立系統之數學模型,並以極點安置法設計高壓直流傳輸系統之比例-積分-微分型阻尼控制器。
    本論文利用頻域之特徵値分析法及時域動態模擬來驗證高壓直流傳輸系統與控制器之效能。由模擬結果顯示,高壓直流傳輸系統能夠有效地控制系統功率潮流以及改善系統於不同干擾下之動態響應。

    This thesis presents the analyzed results of power flow, stability, steady-state characteristics, and dynamic performance of a high-voltage direct current (HVDC) transmission system connected between two power systems as well as between an integrated hybrid large-scale offshore wind farm and marine-current farm and a power grid. Under three-phase balanced loading conditions, the q-d axis equivalent-circuit model is developed to establish the complete system models, and a proportional-integral-derivative (PID) damping controller of the HVDC system is designed using pole-assignment approach based on modal control theory.
    For demonstrating the performance of the proposed HVDC joined with the designed damping controller, frequency-domain results based on eigenvalue analysis as well as time-domain simulations under disturbance conditions are both performed. It can be concluded from the simulation results that the proposed HVDC combined with the designed damping controller is capable of controlling power flow and improving the performance of the studied two power systems and the integrated hybrid system under disturbance conditions.

    摘 要 I Abstract II 誌 謝 III 目錄 IV 表目錄 IX 圖目錄 XII 符 號 說 明 XVII 第一章 緒論 1 1-1 研究背景 1 1-2 高壓直流傳輸簡介 3 1-3 研究動機 8 1-4 相關文獻回顧 9 1-5 本論文之貢獻 18 1-6 研究內容概述 19 第二章 系統之數學模型 21 2-1 前言 21 2-2 風速之數學模型 22 2-3 海流流速之數學模型 24 2-4風渦輪機之數學模型 25 2-5海流渦輪機之數學模型 27 2-6 旋角控制器之數學模型 29 2-7 海流感應發電機之數學模型 30 2-8 風場雙饋式感應發電機之數學模型 32 2-9 高壓直流傳輸系統之數學模型 38 第三章 兩電網間加入高壓直流傳輸系統之穩態分析 47 3-1 前言 47 3-2 實功率參考值改變之穩態分析 47 3-3虛功率參考值改變之穩態分析 58 3-4 電網電壓改變之穩態分析 68 第四章 兩電網間加入高壓直流傳輸系統之動態分析 81 4-1 前言 81 4-2 實功率參考值變動之分析 81 4-2-1 實功率參考值發生步階變動 81 4-2-2 實功率參考值發生斜坡變動 88 4-3 虛功率參考值變動之分析 94 4-3-1 Station A虛功率參考值發生變動 94 4-3-2 Station B虛功率參考值發生變動 100 4-4 高壓直流傳輸系統電網發生電壓驟降之分析 105 第五章 高壓直流傳輸系統之控制器設計 111 5-1 前言 111 5-2 高壓直流傳輸系統之控制系統模型 111 5-3 極點安置法設計比例-積分-微分控制器 113 5-3-1 極點安置法設計控制器 113 5-3-2 控制器之設計結果 116 5-4 靈敏度分析 117 第六章 離岸式風場與海流場加入高壓直流傳輸系統併聯電網之穩態分析 123 6-1 前言 123 6-2 風速與流速改變之穩態分析 123 6-2-1 風速與流速改變之系統穩態工作點分析 123 6-2-2 風速與流速改變之系統特徵值分析 132 6-3 電網端電壓改變之穩態分析 141 6-4 傳輸線長度改變之穩態分析 156 6-4-1 傳輸線長度改變系統之穩態工作點分析 156 6-4-2傳輸線長度改變之系統特徵值分析 165 6-5 本地負載阻抗改變之穩態分析 169 6-5-1 本地負載阻抗改變系統之穩態工作點分析 169 6-5-2 本地負載阻抗改變之系統特徵值分析 177 第七章 離岸式風場與海流場加入高壓直流傳輸系統併聯電網之動態分析 181 7-1 前言 181 7-2 離岸式風場發生轉矩干擾之動態分析 181 7-3 本地負載瞬間改變之動態分析 189 7-4 低電壓持續運轉能力之動態分析 197 7-4-1 美國電網法規之低電壓持續運轉能力 197 7-4-2 台電再生能源併聯法規之低電壓持續運轉能力 204 7-5 電網端發生三相短路故障之動態分析 212 7-6 風速變動之動態分析 220 7-6-1 風速變動(1)之動態分析 220 7-6-2 風速變動(2)之動態分析 228 7-7 流速變動之動態分析 236 第八章 結論與未來研究方向 243 8-1 結論 243 8-2 未來研究方向 244 參考文獻 246 附錄 251 作 者 簡 介 252

    [1] 經濟部能源局,http://www.moeaboe.gov.tw/,2010年4月6日。
    [2] 劉建宏,海流發電系統之特性分析,國立成功大學電機工程學系碩士論文,2008年6月。
    [3] S. Cole and R. Belmans, “Transmission of bulk power,” IEEE Industrial Electronics Magazine, vol. 3, no. 3, pp. 19-24, September 2009.
    [4] ABB website, http://www.abb.com/, retrieve dete: June 19, 2010.
    [5] P. Ledesma and J. Usaola, “Doubly fed induction generator model for transient stability analysis,” IEEE Trans. Energy Conversion, vol. 20, no. 2, pp. 388-397, June 2005.
    [6] M. Kayikci and J. V. Milanovic, “Reactive power control strategies for DFIG-based plants,” IEEE Trans. Energy Conversion, vol. 22, no. 2, pp. 389-396, June 2007.
    [7] R. G. de Almeida and J. A. P. Lopes, “Participation of doubly fed induction wind generators in system frequency regulation,” IEEE Trans. Power Systems, vol. 22, no. 3, pp. 944-950, August 2007.
    [8] F. Wu, X.-P. Zhang, K. Godfrey, and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission, and Distribution, vol. 1, no. 5, pp. 751-760, September 2007.
    [9] J. G. Slootweg and W. L. Kling, “Aggregated modeling of wind parks in power system,” in Proc. IEEE Power Tech conference, June 23-26, 2003.
    [10] I. G. Bryden, S. Naik, P. Fraenkel, and C. R. Bullen, “Matching tidal current plants to local flow conditions,” Energy, vol. 23, no. 9, pp. 699-709, September 1998.
    [11] A. S. Bahaj and L. Myers, “Analytical estimates of the energy yield potential from the Alderney Race (Channel Islands) using marine current energy converters,” Renewable Energy, vol. 29, no. 12, pp. 1931-1945, October 2004.
    [12] S. E. B. Elghali, R. Balme, K. L. Saux, M. E. H. Benbouzid, J. F. Charpentier, and F. Hauville, “A simulation model for the evaluation of the electrical power potential harnessed by a marine current turbine,” IEEE Journal of Oceanic Engineering, vol. 32, no. 4, pp. 786-797, October 2007.
    [13] X. I. Koutiva, T. D. Vrionis, N. A. Vovos, and G. B. Giannakopoulos, “Optimal integration of an offshore wind farm to a weak AC grid,” IEEE Trans. Power Delivery, vol. 21, no. 2, pp. 987-994, April 2006.
    [14] L. Gengyin, M. Yin, Z. Ming, and Z. Chenyong, “Modeling of VSC-HVDC and control strategies for supplying both active and passive systems,” in Proc. 2006 IEEE Power Engineering Society General Meeting, June 18-22, 2006, Montreal, Quebec, Canada.
    [15] S. Bozhko, G. Asher, R. Li, J. Clare, and L. Yao, “Large offshore DFIG-based wind farm with line-commutated HVDC connection to the main grid: Engineering studies,” IEEE Trans. Energy Conversion, vol. 23, no. 1, pp. 119-127, March 2008.
    [16] R. Li, S. Bozhko, and G. Asher, “Frequency control design for offshore wind farm with LCC-HVDC link connection,” IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1085-1092, May 2008.
    [17] K. R. Padiyar and N. Prabhu, “Modelling control design and analysis of VSC based HVDC transmission systems,” in Proc. 2004 Power System Technology International Conference, November 21-24, 2004, Singapore.
    [18] S. Meier and P. C. Kjor, “Benchmark of annual energy production for different wind farm topologies,” in Proc. 2005 Power Electronics Specialists Conference, June 16, 2005, Recife, Brazil.
    [19] C. Feltes, H. Wrede, F. W. Koch, and I. Erlich, “Enhanced fault ride-through method for wind farms connected to the grid through VSC-based HVDC transmission,” IEEE Trans. Power Systems, vol. 24, no. 3, pp. 1537-1546, August 2009.
    [20] L. Xu, L. Yao, and C. Sasse, “Grid integration of large DFIG-based wind farms using VSC transmission,” IEEE Trans. Power Systems, vol. 22, no. 3, pp. 976-984, August 2007.
    [21] N. Prabhu and K. R. Padiyar, “Investigation of subsynchronous resonance with VSC-based HVDC transmission systems,” IEEE Trans. Power Delivery, vol. 24, no. 1, pp. 433-440, January 2009.
    [22] S. M. Muyeen, R. Takahashi, and J. Tamura, “Operation and control of HVDC-connected offshore wind farm,” IEEE Trans. Sustainable Energy, vol. 1, no. 1, pp. 30-37, April 2010.
    [23] N. Flourentzou, V. G. Agelidis, and G. D. Demetriades, “VSC-based HVDC power transmission systems: An overview,” IEEE Trans. Power Electronics, vol. 24, no. 3, pp. 592-602, March 2009.
    [24] Y. H. Liu, J. Arrillaga, N. Murray, and N. R. Watson, “Derivation of a four-quadrant control system for MLCR-HVDC conversion,” IEEE Trans. Power Delivery, vol. 24, no. 4, pp. 2223-2231, October 2009.
    [25] S. V. Bozhko, R. B.-Gimenez, L. Risheng, J. C. Clare, and G. M. Asher, “Control of offshore DFIG-based wind farm grid with line-commutated HVDC connection,” IEEE Trans. Energy Conversion, vol. 22, no. 1, pp. 726-735, March 2007.
    [26] P. Bresesti, W. L. Kling, R. L. Hendriks, and R. Vailati, “HVDC connection of offshore wind farms to the transmission system,” IEEE Trans. Energy Conversion, vol. 22, no. 1, pp. 37-43, March 2007.
    [27] C. Du, E. Agneholm, and G. Olsson, “VSC-HVDC system for industrial plants with onsite generators,” IEEE Trans. Power Delivery, vol. 24, no. 3, pp. 1359-1366, July 2009.
    [28] M. E. Montilla-DJesus, D. Santos-Martin, S. Arnaltes, and E. D. Castronuovo, “Optimal operation of offshore wind farms with line-commutated HVDC link connection,” IEEE Trans. Power Systems, vol. 25, no. 2, pp. 504-513, June 2010.
    [29] 劉書瑋,市電併聯型風力感應發電機之研究,國立成功大學電機工程學系碩士論文,2005年6月。
    [30] 林俊宏,含旋角控制器之市電併聯型風力感應發電機之特性分析,國立成功大學電機工程學系碩士論文,2006年6月。
    [31] 陳翔雄,利用超導儲能系統於大型離岸式風場之動態穩定度改善研究,國立成功大學電機工程學系博士論文,2009年3月。
    [32] 熊家田,利用靜態同步補償器於混合大型離岸式風場與海流場之動態穩定度改善研究,國立成功大學電機工程學系碩士論文,2009年6月。
    [33] 余俊穎,飛輪儲能系統於混合大型離岸式風場與海流場之功率潮流控制及穩定度分析,國立成功大學電機工程學系碩士論文,2009年6月。
    [34] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 1986.
    [35] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
    [36] P. Kundur, Power System Stability and Control, New York: McGraw-Hill, 1994.
    [37] J. Arrillaga, Y. H. Liu, and N. R. Watson, Flexible Power Transmission, Chichester: Wiley, 2007.
    [38] S. M. Muyeen, R. Takahashi, T. Murata, and J. Tamura, “A variable speed wind turbine control strategy to meet wind farm grid code requirements,” IEEE Trans. Power Systems, vol. 25, no. 1, pp. 331-340, February 2010.
    [39] D. W. Hart, Introduction to Power Electronics, Indiana: Prentice Hall, 2001.
    [40] 陳壽孫、羅靜儀、石金福、楊金石、蒲冠志,電力系統分析,新文京開發出版股份有限公司,1995年6月。
    [41] 台灣電力公司,http://www.taipower.com.tw/,2010年7月10日。

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE