簡易檢索 / 詳目顯示

研究生: 魏世澤
Wei, Shih-Tse
論文名稱: 基於哈達碼轉換之無失真H.264/AVC殘值編碼演算法
Efficient Residual Coding Algorithms Based on Hadamard Transform for Lossless H.264/AVC
指導教授: 劉濱達
Liu, Bin-Da
楊家輝
Yang, Jar-Ferr
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 100
中文關鍵詞: 適應性可變長度編碼H.264/AVC哈達碼轉換無失真編碼殘值編碼
外文關鍵詞: CAVLC, H.264/AVC, Hadamard Transform, Lossless Coding, Residual Coding
相關次數: 點閱:121下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出基於H.264/AVC之高效率無失真編碼演算法,利用哈達碼轉換得到資料緊密特性來編碼殘值係數。首先提出的無失真編碼演算法,使用與頻率不相關的調降因子將轉換後的殘值係數適應性區分成商數和餘數部分。商數部分可經由熵編碼得到較好的編碼結果,餘數部分則在移除哈達碼轉換造成的冗餘位元後編碼成精簡形式。為了進一步增加壓縮效率和降低運算複雜度,本論文提出了另一個無失真壓縮演算法,在此方法中使用頻率相依的調降因子。轉換後的殘值係數首先進行精簡量化,接著使用改良後的鋸齒式掃描及適應性可變長度編碼器來壓縮精簡後的係數。模擬結果顯示,本論文提出的演算法,不管是使用內框預測或外框預測的編碼序列,都勝過原始的H.264/AVC無失真壓縮法。

    Efficient lossless coding algorithms for encoding residual data based on H.264/AVC that uses the Hadamard transform to take advantage of data compaction are proposed. A lossless coding algorithm is first shown to use frequency-independent scale-down factors to adaptively separate the transformed residual coefficients into quotient and remainder parts. The quotient parts are better encoded by entropy coders. The remainder parts are encoded into a compact form after the redundancies caused by the Hadamard transform are removed. To further improve the compression performance and reduce the computational complexity, a lossless coding algorithm that uses frequency-dependent scale-down factors is also proposed. The transformed residual coefficients are compacted using a compact truncation. The compacted coefficients are then compressed by a modified zig-zag scan and an improved context-based adaptive variable length coding coder. Simulation results reveal that the proposed algorithms outperform conventional lossless H.264/AVC for both intra and inter coded sequences.

    Abstract (Chinese) i Abstract (English) iii Acknowledgements v Table of Contents vii List of Tables ix List of Figures xi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization for the Dissertation 6 Chapter 2 Lossless Coding Capabilities of H.264/AVC 7 2.1 Overview of Lossy and Lossless H.264/AVC 7 2.2 Intra Prediction for Lossless H.264/AVC 10 2.3 Transforms in H.264/AVC 13 2.4 Zig-Zag Scan and CAVLC Coder in H.264/AVC 18 2.5 Mode Decisions in H.264/AVC 21 Chapter 3 Design of Efficient Lossless Coding Algorithms 23 3.1 Overview of Proposed Lossless Coding Systems 23 3.2 Benefits and Problems of Hadamard Transform 25 3.3 Redundancy Exploration in Hadamard Transform 28 3.4 Residual Coding Algorithm with Hadamard Transform by Frequency-Independent Scale-Down Factors 34 3.4.1 Block diagram of overall algorithm 34 3.4.2 Truncation of transformed coefficients 35 3.4.3 Adjustment of quotient parts of transformed coefficients 36 3.4.4 Block-based adaptive truncation technique 41 3.5 Residual Coding Algorithm with Hadamard Transform by Frequency-Dependent Scale-Down Factors 45 3.5.1 Block diagram of overall algorithm 45 3.5.2 Compact truncation for transformed coefficients 46 3.5.3 Adjustment of compacted coefficients 47 3.5.4 Modified zig-zag scan 49 3.5.5 Improved CAVLC coder 51 3.5.6 Case study 57 3.6 Improved Intra Prediction for Lossless H.264/AVC 63 3.7 Adaptive Motion Search Algorithm for Lossless H.264/AVC 65 Chapter 4 Simulation Results and Comparisons 69 4.1 Settings for Simulations 69 4.2 Simulations for Lossless and Near-Lossless H.264/AVC 72 4.3 Simulations for Residual Coding Algorithm with Hadamard Transform by Frequency-Independent Scale-Down Factors 75 4.4 Simulations for Residual Coding Algorithm with Hadamard Transform by Frequency-Dependent Scale-Down Factors 79 4.5 Comparisons of Proposed and Other Existing Algorithms 84 Chapter 5 Conclusions and Future Work 89 5.1 Conclusions 89 5.2 Future Work 91 References 93 Publications 99

    [1] Information Technology—Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to About 1.5 Mbit/s—Part 2: Video, ISO/IEC 11172-2, Aug. 1993, (and subsequent corrigenda).
    [2] Information Technology—Generic Coding of Moving Pictures and Associated Audio Information: Video, ITU-T Rec. H.262 and ISO/IEC 13818-2, July 1995, (and subsequent amendment and corrigenda).
    [3] Information Technology—Coding of Audio-Visual Objects—Part 2: Visual, ISO/IEC 14496-2, Jan. 1999, (and subsequent amendment and corrigenda).
    [4] Video Codec for Audiovisual Services at p×64 kbits/s, ITU-T Rec. H.261, Dec. 1990.
    [5] Video Coding for Low Bit Rate Communication, ITU-T Rec. H.263, Mar. 1996, (and subsequent appendix and annex).
    [6] Advanced Video Coding for Generic Audiovisual Services, ITU-T Rec. H.264 and ISO/IEC 14496-10, May 2003, (and subsequent amendment and corrigenda).
    [7] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 560-576, July 2003.
    [8] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stockhammer, and T. Wedi, “Video coding with H.264/AVC: tools, performance, and complexity,” IEEE Circuits Syst. Mag., vol. 4, pp. 7-28, Mar. 2004.
    [9] I. E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next-Generation Multimedia. Chichester, U.K.: Wiley, 2003.
    [10] G. J. Sullivan, P. N. Topiwala, and A. Luthra, “The H.264/AVC advanced video coding standard: overview and introduction to the fidelity range extensions,” in Proc. SPIE Conf. Appl. Digit. Image Process. XXVII, Aug. 2004, pp. 454-474.
    [11] D. Marpe, T. Wiegand, and S. Gordon, “H.264/MPEG4-AVC fidelity range extensions: tools, profiles, performance, and application areas,” in Proc. IEEE ICIP, Sept. 2005, pp. 593-596.
    [12] V. Sanchez, P. Nasiopoulos, and R. Abugharbieh, “Lossless compression of 4D medical images using H.264/AVC,” in Proc. IEEE ICASSP, May 2006, pp. 1116-1119.
    [13] V. Sanchez, P. Nasiopoulos, and R. Abugharbieh, “Efficient lossless compression of 4-D medical images based on the advanced video coding scheme,” IEEE Trans. Inf. Technol. Biomed., vol. 12, pp. 442-446, July 2008.
    [14] Lossless Coding and QP Range Selection, document JVT-C023, ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6, May 2002.
    [15] Information Technology—Digital Compression and Coding of Continuous-Tone Still Images: Requirements and Guidelines, ITU-T Rec. T.81 and ISO/IEC 10918-1, Sept. 1992, (and subsequent corrigenda).
    [16] W. B. Pennebaker and J. L. Mitchell, JPEG: Still Image Data Compression Standard. New York: Van Nostrand Reinhold, 1992.
    [17] Information Technology—Lossless and Near-Lossless Compression of Continuous-Tone Still Images: Baseline, ITU-T Rec. T.87 and ISO/IEC 14495-1, June 1998.
    [18] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS,” IEEE Trans. Image Process., vol. 9, pp. 1309-1324, Aug. 2000.
    [19] Information Technology—JPEG 2000 Image Coding System: Motion JPEG 2000, ITU-T Rec. T.802 and ISO/IEC 15444-3, Jan. 2005, (and subsequent amendment).
    [20] D. S. Taubman and M. Marcellin, JPEG2000: Image Compression Fundamentals, Standards and Practice. Dordrecht, Netherlands: Kluwer, 2002.
    [21] Y. L. Lee, K. H. Han, and G. J. Sullivan, “Improved lossless intra coding for H.264/MPEG-4 AVC,” IEEE Trans. Image Process., vol. 15, pp. 2610-2615, Sept. 2006.
    [22] Lossless Intra Coding for Improved 4:4:4 Coding in H.264/MPEG-4 AVC, document JVT-P016, ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6, July 2005.
    [23] Complexity of the Proposed Lossless Intra for 4:4:4, document JVT-Q035, ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6, Oct. 2005.
    [24] Y. L. Lee, K. H. Han, and Y. K. Lee, “Method and apparatus for lossless encoding and decoding,” U.S. Patent 2005/0271142 A1, Dec. 2005.
    [25] W. Philips and K. Denecker, “A new embedded lossless/quasi-lossless image coder based on the Hadamard transform,” in Proc. IEEE ICIP, Oct. 1997, pp. 667-670.
    [26] W. Philips, K. Denecker, P. D. Neve, and S. V. Assche, “Lossless quantization of Hadamard transform coefficients,” IEEE Trans. Image Process., vol. 9, pp 1995-1999, Nov. 2000.
    [27] T. Mochizuki, “Bit reduction for lossless image coding using Hadamard transform,” in Proc. IEICE Gen. Conf., Mar. 1995, p. 79.
    [28] T. Mochizuki, “Bit reduction for lossless image coding using Hadamard transform,” IEICE Tech. Rep. IE95-6, Tokyo, Japan, Apr. 1995, pp. 39-46.
    [29] T. Mochizuki, “Bit pattern redundancy removal for Hadamard transformation coefficients and its application to lossless image coding,” Electron. Commun. Japan (Part III: Fundam. Electron. Sci.), vol. 80, pp. 1-10, June 1997.
    [30] T. Nakayama, “Data transform method and apparatus,” U.S. Patent 2006/0045369 A1, Mar. 2006.
    [31] S. Takamura and Y. Yashima, “H.264-based lossless video coding using adaptive transforms,” in Proc. IEEE ICASSP, Mar. 2005, pp. 301-304.
    [32] S. Takamura and Y. Yashima, “Lossless scalable video coding with H.264 compliant base layer,” in Proc. IEEE ICIP, Sept. 2005, pp. 754-757.
    [33] J. R. Ding, and J. F. Yang, “Adaptive entropy coding with (5, 3) DWT for H.264 lossless image coding,” in Proc. IEEE TENCON, Oct. 2007, pp. 1-4.
    [34] J. R. Ding, J. Y. Chen, F. C. Yang, and J. F. Yang, “Two-layer and adaptive entropy coding algorithms for H.264-based lossless image coding,” in Proc. IEEE ICASSP, Mar. 2008, pp. 1369-1372.
    [35] J. H. Nam and D. Sim, “Lossless video coding based on pixel-wise prediction,” Multimedia Syst., vol. 14, pp. 291-298, Nov. 2008.
    [36] Y. C. Wei, “Performance improvements for intra-prediction in advanced video coding,” Ph.D. Dissertation, National Cheng Kung University, Tainan, Taiwan, 2008.
    [37] Q. Zhang, Y. Dai, and C. C. J. Kuo, “Lossless video compression with residual image prediction and coding (RIPC),” in Proc. IEEE ISCAS, May 2009, pp. 617-620.
    [38] J. Heo, S. H. Kim, and Y. S. Ho, “New CAVLC encoding algorithm for lossless intra coding in H.264/AVC,” in Proc. PCS, May 2009, pp. 77-80.
    [39] J. Heo, S. H. Kim, and Y. S. Ho, “New CAVLC design for lossless intra coding,” in Proc. IEEE ICIP, Nov. 2009, pp. 637-640.
    [40] J. Heo and Y. S. Ho, “Efficient level and zero coding methods for H.264/AVC lossless intra coding,” IEEE Signal Process. Lett., vol. 17, pp. 87-90, Jan. 2010.
    [41] J. Heo, S. H. Kim, and Y. S. Ho, “Improved CAVLC for H.264/AVC lossless intra-coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, pp. 213-222, Feb. 2010.
    [42] J. Heo and Y. S. Ho, “Improved context-based adaptive binary arithmetic coding over H.264/AVC for lossless depth map coding,” IEEE Signal Process. Lett., vol. 17, pp. 835-838, Oct. 2010.
    [43] S. H. Kim, J. Heo, and Y. S. Ho, “Efficient entropy coding scheme for H 264/AVC lossless video coding,” Signal Process.-Image Commun., vol. 25, pp. 687-696, Oct. 2010.
    [44] S. H. Kim, J. W. Kang, and C. C. J. Kuo, “Improved H.264/AVC lossless intra coding with two-layered residual coding (TRC),” IEEE Trans. Circuits Syst. Video Technol., vol. 21, pp. 1005-1010, July 2011.
    [45] S. H. Lee, J. Ryu, and N. I. Cho, “Improved H.264/AVC lossless intra compression using multiple partition prediction for 4×4 intra block,” in Proc. IEEE ICIP, Sept. 2011, pp. 2005-2008.
    [46] L. L. Wang and W. C. Siu, “Improved lossless coding algorithm in H.264/AVC based on hierarchical intra prediction,” in Proc. IEEE ICIP, Sept. 2011, pp. 2009-2012.
    [47] L. L. Wang and W. C. Siu, “Improved lossless coding algorithm in H.264/AVC based on hierarchical intraprediction and coding-mode selection,” J. Electron. Imaging, vol. 20, pp. 043001-043001-10, Oct. 2011.
    [48] L. Song, Z. Luo, and C. Xiong, “Improving lossless intra coding of H.264/AVC by pixel-wise spatial interleave prediction,” IEEE Trans. Circuits Syst. Video Technol., vol. 21, pp. 1924-1928, Dec. 2011.
    [49] J. Heo and Y. S. Ho, “Efficient differential pixel value coding in CABAC for H.264/AVC lossless video compression,” Circuits Syst. Signal Process., vol. 31, pp. 813-825, Apr. 2012.
    [50] H.264/AVC JM reference software. [Online]. Available: http://iphome.hhi.de/suehring/tml/
    [51] Xiph.org Test Media. [Online]. Available: http://media.xiph.org/video/derf/
    [52] USC-SIPI Image Database. [Online]. Available: http://sipi.usc.edu/database/database.php
    [53] Image Compression Benchmark. [Online]. Available: http://www.imagecompression.info/test_images/
    [54] FFmpeg. [Online]. Available: http://www.ffmpeg.org/
    [55] K. Ugur, K. Andersson, A. Fuldseth, G. Bjontegaard, L. P. Endresen, J. Lainema, A. Hallapuro, J. Ridge, D. Rusanovskyy, C. Zhang, A. Norkin, C. Priddle, T. Rusert, J. Samuelsson, R. Sjoberg, and Z. Wu, “High performance, low complexity video coding and the emerging HEVC standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, pp. 1688-1697, Dec. 2010.
    [56] High Efficiency Video Coding (HEVC). [Online]. Available: http://hevc.info/
    [57] H.265.net. [Online]. Available: http://www.h265.net/
    [58] JCT-VC Document Management System. [Online]. Available: http://phenix.it-sudparis.eu/jct/
    [59] HEVC Software Repository (HHI). [Online]. Available: https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/

    下載圖示 校內:2015-08-31公開
    校外:2015-08-31公開
    QR CODE