| 研究生: |
林昌緯 Lin, Chang-Wei |
|---|---|
| 論文名稱: |
周邊神經生物力學及電學分析於神經義肢應用 Biomechanical and bioelectrical analyses of peripheral nerves with application to neural protheses |
| 指導教授: |
朱銘祥
Ju, Ming-Shaung 林宙晴 Lin, Chou-Ching K. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 周邊神經 、生物力學 、電學 、神經義肢 、神經電極 、有限元素法 |
| 外文關鍵詞: | finite element, electrical, neural prostheses, peripheral nerves, electrodes, biomechanical |
| 相關次數: | 點閱:56 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,神經義肢與組織工程為生醫工程的重要領域。環型銬式電極為神經義肢的元件,此電極主要應用於功能性電刺激與神經電位訊號的量測。環型銬式電極植入人體周邊神經所施壓力,有可能導致周邊神經內微管與血管的阻塞,造成神經組織的壞死而失去功能。目前對周邊神經生物力學方面的研究相當有限,因此有需要建立一套生物力學與電學的模型來改善電極的設計與效能。本研究的目的在於周邊神經生物力學與電學分析,由於周邊神經組織為非均質且幾何形狀不規則,因此以有限元素套裝軟體ANSYS進行分析。生物力學分析包括材料特性實驗與模擬,而電學分析則包括肌電訊號對神經電位訊號的干擾與電極的佈置對電刺激空間選擇性的影響。
本研究成果在生物力學分析方面,已完成周邊神經壓縮位移與力量的實驗,並藉以估測周邊神經材料參數的數量級,其楊式係數為41.6kPa。在電學分析方面,當銬式電極全長大於25mm之後,能有效地降低肌電訊號的干擾;並且設計出新的十字型電極佈置能有效地提升傳統侍從向電極的電刺激選擇性,降低橫向電極刺激所需的能量。
Recently, neural prostheses and tissue engineering are important areas in biomedical engineering. In neural prosthesis, spiral cuff electrodes are utilized for functional electrical stimulation and electroneurogram recording. However, the peripheral nerves surrounded by spiral cuff electrodes may be subject to external pressure, which may result in the injury or malfunction of the nerve. Furthermore, the selectivity of FES is an important design factor for spiral cuff electrodes. Therefore, the goal of this thesis is to develop biomechanical and bioelectrical models of peripheral nerves for designing spiral cuff electrodes and for understanding biomechanics of neural tissues. An experimental system was built to measure the mechanical properties and geometric shape of peripheral nerves. It was difficult to study the electric characteristics of peripheral nerves by analytic method, so the finite element method is utilized for analysis and design of electrodes.
From the peripheral nerves testing, biomechanical properties of nerve are estimated. The apparent Young’s modulus of peripheral nerve is 41.6 kPa. For the electrical analyses, the performance of ENG recording may be improved by proper shielding of electromyogram. A novel electrodes may be that can increase the selectivity and decrease the current density is designed based on the bioelectrical analyses.
[1] L. C. Junqueira and J. Carneiro, Basic Histology, Lange Medical Publications, California U.S.A, 1980.
[2] 任力鋒, 謝嘉平, 馬淑華, 劉喜玲, 黃慧紅, “大白鼠周圍神經的生物力學性質研究,” 中國生物醫學工程學報, vol. 15, no. 3, pp. 273-278, 1994.
[3] P. H. Veltink, B. K. Van Veen, J. J. Struuk, Jan Holsheimer, and Herman B. K. Boom, “A modeling study of nerve fascicle stimulation,” IEEE Trans. Biomed. Eng., vol. 36, no. 7, pp. 683-691, July 1989.
[4] R. R. Chintalacharuvu, D. A. Keisenski, and J. Thomas Mortimer, “A numerical analysis of the electric field generated by a nerve cuff electrode,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 13, no. 2, pp. 912-913, 1991.
[5] J. K. Cavanaugh, Jian-Cheng Lin, and D. M. Durand, ”Finite element analysis of electrical nerve stimulation,” 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 355-356, 1996.
[6] K. E. I. Deurloo, J. Holsheimer, and H. B. K. Boom, “Transverse tripolar stimulation of peripheral nerve: a modeling study of spatial selectivity,” Medical & Biological Engineering & Computing, vol. 36, no. 1, pp. 66-74, 1998.
[7] M. Rahal, J. Taylor, and N. Donaldson, “The effect of nerve cuff geometry on interference reduction: a study by computer modeling,” IEEE Trans. Biomed. Eng., vol. 47, no. 1, pp. 136-138, January 2000.
[8] S. Sunderland, Nerve and nerve injuries, Churchill Livingstone, Edinburgh and New York, 1978.
[9] M. Mumenthaler and H. Schliack, Peripheral nerve lesions, Georg Thieme Verlag, New York, 1991.
[10] H. Millesi, G. Zoch, and R. Reihsner, “Mechanical properties of perpheral nerves,” Clinical Orthopaedics and Related Research, no. 314, pp. 76-83, 1995
[11] J. Scifert, K. Totoribe, V. Goel, C. Traynelis, C. Clark, “Spinal cord deformation in flexion and extension – a finite element study,” Proceedings of the 22nd Annual EMBS International Conference, pp.855-856, July 2000.
[12] J. Perez-Orive and D. M. Durand, “Modeling Study of Peripheral Nerve Recording Selectivity,” IEEE Trans. Rehab. Eng., vol. 8, no. 3, pp. 320-328, Sep. 2000.
[13] A. Q. Choi, J. K. Cavanugh, and D. M. Durand, “Selectivity of multiple-contact nerve cuff electrode: a simulation analysis,” IEEE Trans. Biomed. Eng., vol. 48, no. 2, pp. 165-172, Feb. 2001.
[14] J. J. Struijk, M. Thomsen, J.O. Larsen, and T. Sinkjaer, “Cuff electrodes for long-term recording of natural sensory information,” IEEE Engineering in Medicine and Biology Magazine, vol. 18, Issue: 3, pp. 91-98, pp. 855-856, May-June, 1999.
[15] F. A. Cuoco, Jr., and D. M. Durand, “Measurement of external pressures generated by nerve cuff electrodes,” IEEE Trans. Biomed. Eng., vol. 8, no. 1, pp. 35-41, March, 2000.
[16] Po-Ling Kuo and Pai-Chi Li, “Measurement of elastic properties of tendons : comparison of two approaches,” IEEE Ultrasonics Symposium, pp. 1857-1860, 2000.
[17] Y. Zheng and A. F. T. Mak, “Effective elastic properties for lower limb soft tissues from manual indentation experiment,” IEEE Trans. Rehab. Eng., vol. 7, no. 3, pp. 257-267, Sep., 1999.
[18] 簡欣鈞, “以微系統製程設計與研製神經性義肢用微電極,” 國立成功大學機械工程學系碩士論文, 2001.
[19] 宋秉翰, “具壓力監測之神經義肢用銬式微電極研究,” 國立成功大學機械工程學系碩士論文, 2002.