簡易檢索 / 詳目顯示

研究生: 李晉宏
Lee, Chin-Hung
論文名稱: 五相容錯高扭力密度裂齒式連續極游標馬達設計
Design of a Five-Phase Fault-Tolerant High Torque Density Segmented-Tooth Consequent-Pole Vernier Machine
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 135
中文關鍵詞: 游標馬達五相容錯齒高扭力密度裂齒式連續極
外文關鍵詞: Vernier Motor, Five-Phase, Fault-Tolerant-Tooth, High Torque Density, Segmented-Tooth, Consequent-Pole
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,具備垂直起降(Vertical Take-Off and Landing, VTOL)能力之飛行載具已成為航空領域發展的重要趨勢,此項技術可有效突破傳統對跑道的依賴,提升起降之靈活性與場域適應性,無論於軍事用途或民生商業應用皆展現出顯著優勢。隨著旋轉電機技術之持續進步,純電力驅動之垂直起降飛行載具(electric VTOL, eVTOL)已逐步從概念走向實現。相較於傳統內燃機推進系統之無人機或具VTOL能力之飛行器,eVTOL具備更高之安全性、更低之運轉噪音以及更優異之續航性能,顯著拓展其應用潛能。本文針對馬達設計,提出以高扭矩密度、高效率、優異容錯能力及最小化磁鐵用量為主要目標。設計採用五相永磁同步游標馬達架構,並結合容錯齒設計,以提升單相開路故障情況下的穩定運作能力,增強電動飛行器於飛行過程中的安全性與可靠性。為提升扭矩密度,馬達定子採用裂齒式結構,以提高游標馬達之齒輪比。另透過連續磁極設計,有效減少磁鐵用量,並配合繞線配置,改善因磁通分佈不均所產生之反電動勢偶次諧波,以優化整體效率表現。在材料選擇方面,則綜合考量扭矩密度、效率與製程可行性,致力於在性能與製造成本之間取得最佳平衡。

    Recent advancements in Vertical Take-Off and Landing (VTOL) technology have significantly expanded the flexibility of aerial vehicles, eliminating the reliance on runways and enabling broader applications in both military and commercial sectors. Electrically powered VTOL aircraft (eVTOLs), driven by progress in rotating electric machine technology, are increasingly replacing conventional combustion-based systems due to their enhanced safety, lower noise, and improved endurance.This thesis proposes a five-phase permanent magnet synchronous Vernier motor optimized for eVTOL applications. The design targets high torque density, high efficiency, fault tolerance, and reduced permanent magnet usage. A segmented-tooth stator structure is adopted to enhance the Vernier gear ratio and torque density, while a continuous-pole rotor reduces magnet consumption. To improve efficiency, optimized winding configurations are employed to suppress even-order back electromotive force (EMF) harmonics arising from flux distribution asymmetry. A fault-tolerant tooth design further ensures stable operation under single-phase open-circuit conditions, enhancing flight safety and reliability. Additionally, material selection is carefully balanced to achieve an optimal trade-off between performance, manufacturability, and cost.The proposed motor architecture demonstrates the potential to meet the stringent demands of eVTOL systems, offering a promising solution for next-generation electric aircraft propulsion.

    摘要II Abstract III 致謝 XXVII 目錄 XXVIII 表目錄 XXXI 圖目錄 XXXIII 符號表 XXXVII 第一章 緒論 1 1.1 研究背景 1 1.2 馬達種類 3 1.2.1 直流馬達 3 1.2.2 感應馬達 4 1.2.3 永磁同步馬達 4 1.2.4 永磁游標馬達 6 1.3 研究動機與目的 7 1.4 論文架構 9 第二章 文獻回顧 10 2.1 高扭力密度電機 10 2.2 游標電機 14 2.3 多相容錯 19 2.4 連續極電機 21 2.5 小結 24 第三章 多相容錯裂齒式連續極游標馬達之特性 25 3.1 前言 25 3.2 游標馬達基本理論 25 3.3 裂齒式游標馬達理論 33 3.4 連續極理論 35 3.5 連續極反電動勢偶次諧波改善 38 3.6 五相馬達數學模型 41 3.7 多相容錯分析 47 3.8 小結 54 第四章 設計模擬特性評估 55 4.1 前言 55 4.2 五相馬達繞線設計 56 4.3 材料選用 59 4.4 定子結構對性能之影響 62 4.5 偶次諧波改善 65 4.6 最佳化結果 68 4.7 小結 73 第五章 原型機製造與實驗驗證 74 5.1 原型機加工組裝 74 5.1.1 定、轉子矽鋼片加工 74 5.1.2 定子繞線75 5.1.3 馬達組裝78 5.2 測試環境及結果 83 5.2.1 原型機電阻測量 83 5.2.2 測試環境 83 5.2.3 無載特性測試 83 第六章 結論與建議 88 6.1 結論 88 6.2 建議 88 參考文獻 89

    [1] Electric Aircraft: Flight Path of the Future of Air Travel[Online]. [Available]:https://canadianaam.com/wp-content/uploads/2021/05/CITI-BANK-ELECTRIC-AIRCRAFT-Flightpath-of-the-Future-of-Air-Travel.pdf
    [2] 機動車輛登記數 - 交通部統計查詢網[Online]. [Available]:https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=a3301
    [3] 空飛ぶクルマ世界市場に関する調査を実施 [Online]. [Available]:http://www.yano.co.jp/press-release/show/press_id/3252
    [4] 空中計程車發展趨勢初探[Online]. [Available]:https://www.iot.gov.tw/xhr/archive/download?file=65d5b106367376e31ef32492
    [5] A. Hughes. Electric Motors and Drives Fundamentals, Types and Applications, 2006.
    [6] Basic Understanding of Automotive Electric Motors [Online]. [Available]:https://www.valeoservice.in/en-in/newsroom/basic-understanding-automotive-electric-motors
    [7] H. -K. Kim and J. Hur, "Dynamic Characteristic Analysis of Irreversible Demagnetization in SPM- and IPM-Type BLDC Motors," IEEE Transactions on Industry Applications, vol. 53, no. 2, pp. 982-990, March-April 2017.
    [8] H. Chen, "Comparative Analysis of Consequent-Pole Permanent Magnet Vernier Machines with Different Rotor-Types," in Proceedings of IEEE 3rd China International Youth Conference on Electrical Engineering (CIYCEE), Wuhan, China, 2022, pp. 1-7.
    [9] H3X Technologies Inc. “HPDM-250 Datasheet v1.1”, 11, 5, 2020
    [10] D. Yun Kwon, K. W. Kim, T. H. Kwon and M. Jeong, "Research on Design and Electromagnetic Characteristics Analysis of Super Premium Efficiency (IE4) Permanent Magnet Assisted Synchronous Reluctance Motor for Rare Earth Permanent Magnet Reduction," in Proceedings of 27th International Conference on Electrical Machines and Systems (ICEMS), Fukuoka, Japan, 2024, pp. 1118-1121.
    [11] D. Wang, C. Xu, S. Xu, J. Nie, G. Xu and X. Wang, "Analysis and Design of High Torque Density Robotic Joint Motors Based on Equivalent Magnetic Circuits," in Proceedings of 2024 IEEE 21st Biennial Conference on Electromagnetic Field Computation (CEFC), Jeju, Korea, Republic of, 2024, pp. 01-02, doi: 10.1109/CEFC61729.2024.10585951.
    [12] Y. Zhao, D. Li, Z. Liang and R. Qu, "A High Power Factor PM Vernier Machine With Segmented Stator," IEEE Transactions on Transportation Electrification, vol. 10, no. 4, pp. 9294-9303, Dec. 2024, doi: 10.1109/TTE.2024.3353925.
    [13] S. Ali, I. Boldea, F. Marignetti, N. Qadeer, L. Tutelea and E. De Santis, "Double Stator Axial Airgap Spoke-PMSM Performance Investigation for High Torque Density by 3D FEM with a Direct-Drive Powertrain Case Study," in Proceedings of 2024 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Naples, Italy, 2024, pp. 1-5, doi: 10.1109/ESARS-ITEC60450.2024.10819871.
    [14] L. Fang, Y. Zhang, D. Li and R. Qu, "High-Torque Density and Low-Torque Ripple- Oriented Design Method for Multi-Harmonics Surface-Mounted PM Vernier Machine," IEEE Transactions on Industry Applications, vol. 61, no. 3, pp. 3687-3700, May-June 2025, doi: 10.1109/TIA.2025.3540726.
    [15] T. Zou, D. Li, R. Qu, D. Jiang and J. Li, "Advanced High Torque Density PM Vernier Machine With Multiple Working Harmonics," IEEE Transactions on Industry Applications, vol. 53, no. 6, pp. 5295-5304, Nov.-Dec. 2017, doi: 10.1109/TIA.2017.2724505.
    [16] Z. Q. Zhu, J. T. Chen, Y. Pang, D. Howe, S. Iwasaki and R. Deodhar, "Analysis of a Novel Multi-Tooth Flux-Switching PM Brushless AC Machine for High Torque Direct-Drive Applications," IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 4313-4316, Nov. 2008, doi: 10.1109/TMAG.2008.2001525.
    [17] Q. Lin, Z. Zhang, H. Xue and H. Gao, "Investigation of High Torque Density Yokeless-Rotor PMSM with Large Diameter to Axial Length Ratio for Aircraft Propulsion," in Proceedings of 2024 IEEE International Magnetic Conference - Short papers (INTERMAG Short papers), Rio de Janeiro, Brazil, 2024, pp. 1-2, doi: 10.1109/INTERMAGShortPapers61879.2024.10577045.
    [18] A. Parsapour, M. Moallem, I. Boldea and B. Fahimi, "High Torque Density Double Stator Permanent Magnet Electric Machine," in Proceedings of 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego, CA, USA, 2019, pp. 664-670, doi: 10.1109/IEMDC.2019.8785192.
    [19] K. Atallah and D. Howe, "A novel high-performance magnetic gear," IEEE Transactions on Magnetics, vol. 37, no. 4, pp. 2844-2846, July 2001
    [20] T. Zou, D. Li, R. Qu, D. Jiang and J. Li, "Advanced High Torque Density PM Vernier Machine With Multiple Working Harmonics," IEEE Transactions on Industry Applications, vol. 53, no. 6
    [21] C. H. Lee, "Vernier Motor and Its Design," IEEE Transactions on Power Apparatus and Systems, vol. 82, no. 66, pp. 343-349, June 1963.
    [22] A. Toba and T. A. Lipo, "Novel dual-excitation permanent magnet Vernier machine," in Proceedings of Conference Record of the IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370), Phoenix, AZ, USA, 1999, pp. 2539-2544 vol.4.
    [23] Z. Q. Zhu and Y. Liu, "Analysis of Air-Gap Field Modulation and Magnetic Gearing Effect in Fractional-Slot Concentrated-Winding Permanent-Magnet Synchronous Machines," IEEE Transactions on Industrial Electronics, vol. 65, no. 5, pp. 3688-3698, May 2018
    [24] Y. Yu, Y. Pei and F. Chai, "Power Factor Analysis in Spoke-Type Permanent Magnet Vernier Motors With Different Slot–Pole Combinations for In-Wheel Direct Drive," IEEE Transactions on Transportation Electrification, vol. 9, no. 1, pp. 642-655, March 2023
    [25] D. Li, R. Qu and T. A. Lipo, "High-Power-Factor Vernier Permanent-Magnet Machines," IEEE Transactions on Industry Applications, vol. 50, no. 6, pp. 3664-3674, Nov.-Dec.
    [26] W. Zhao, K. Du and L. Xu, "Design Considerations of Fault-Tolerant Permanent Magnet Vernier Machine," IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp. 7290-7300, Sept. 2020
    [27] N. Bianchi, M. D. Pre, G. Grezzani and S. Bolognani, "Design considerations on fractional-slot fault-tolerant synchronous motors," in Proceedings of IEEE International Conference on Electric Machines and Drives, 2005., San Antonio, TX, USA, 2005, pp. 902-909
    [28] H. Li, Z. Q. Zhu and Y. Liu, "Optimal Number of Flux Modulation Pole in Vernier Permanent Magnet Synchronous Machines," IEEE Transactions on Industry Applications, vol. 55, no. 6, pp. 5747-5757, Nov.-Dec. 2019
    [29] S. -U. Chung, J. -W. Kim, Y. -D. Chun, B. -C. Woo and D. -K. Hong, "Fractional Slot Concentrated Winding PMSM With Consequent Pole Rotor for a Low-Speed Direct Drive: Reduction of Rare Earth Permanent Magnet," IEEE Transactions on Energy Conversion, vol. 30, no. 1, pp. 103-109, March 2015, doi: 10.1109/TEC.2014.2352365.
    [30] B. Chen, Y. Xiao, J. Shi, Y. Hu, L. Li and M. Liu, "Radial Force Characteristics of a Consequent-Pole Permanent Magnet Synchronous Motor," IEEE Transactions on Industry Applications, vol. 59, no. 6, pp. 6664-6673, Nov.-Dec. 2023
    [31] D. Li, R. Qu, J. Li and W. Xu, "Design of consequent pole, toroidal winding, outer rotor vernier permanent magnet machines," IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014, pp. 2342-2349
    [32] T. A. Lipo, Introduction to AC Machine Design, Wiley Online Books, 2017, ch2.
    [33] M. Cheng, P. Han and W. Hua, "General Airgap Field Modulation Theory for Electrical Machines," IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6063-6074, Aug. 2017, doi: 10.1109/TIE.2017.2682792.
    [34] W. Zhao, Q. Hu, J. Ji, Z. Ling and Z. Li, "Torque Generation Mechanism of Dual-Permanent-Magnet-Excited Vernier Machine by Air-Gap Field Modulation Theory," IEEE Transactions on Industrial Electronics, vol. 70, no. 10, pp. 9799-9810, Oct. 2023
    [35] M. -F. Hsieh, C. -Y. Chang, T. -A. Huynh and D. G. Dorrell, "Design and Analysis of Consequent-Pole Permanent Magnet Vernier Motor With Cancellation of Even-Order Harmonics," IEEE Transactions on Magnetics, vol. 59, no. 11, pp. 1-6, Nov. 2023, Art no. 8204406, doi: 10.1109/TMAG.2023.3293268.
    [36] Y. Feng, Y. Liao, H. Lin and L. Yan, “Fault-tolerant Control of Six-phase Permanent-magnet Synchronous Machine Drives Under Open-phase Faults,” in Proceedings of 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, pp. 1-5, 2019.
    [37] J. Li, K. T. Chau, J. Z. Jiang, C. Liu and W. Li, "A New Efficient Permanent-Magnet Vernier Machine for Wind Power Generation," IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 1475-1478, June 2010
    [38] 佑任磁電有限公司磁鐵目錄[Online]. [Available]: https://uz-magnet.com.tw/portfolio-view/uz-magner_04/.

    無法下載圖示 校內:2030-08-25公開
    校外:2030-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE