| 研究生: |
陳葆疄 Chen, Pao-Lin |
|---|---|
| 論文名稱: |
不確定系統的混合模型跟隨控制:理論與實現 Hybrid Model Following Control for Uncertain Systems: Theorem and Implementation |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hong Jason |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 滑模控制 、H-infinity 控制器 、追蹤器設計 、數位重新設計 、線性二次追蹤器 、模型跟隨控制 、降壓變換器 |
| 外文關鍵詞: | Sliding mode control, H-infinity control, Digital redesign, Linear quadratic analog tracker, Model following control, Buck converter |
| 相關次數: | 點閱:119 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,針對採樣不確定系統,提出了基於模型跟隨控制的理論與實現。首先,針對採樣不確定系統,探討混合模型跟隨控制結合數位重新再設計的滑模控制之穩定度。接著,為了抑制匹配干擾,本文中提出一種結合H2和滑模控制的數位重新再設計控制器。然後,提出了結合H-infinity和滑模控制的數位重新再設計控制器,以抑制匹配和非匹配的干擾。最後,成功地實現了結合H2和滑模控制的數位重新再設計的控制方法,應用在控制降壓變換器
Theorem investigation and implementation based on the model-following control for the sampled-data uncertain systems have been proposed in this thesis. First, the stability of a hybrid model-following control integrated with the digital-redesign sliding-mode control for the sampled-data uncertain system is investigated. Next, the digital-redesign controller for the integrated H2 and sliding-mode control has been newly proposed in this thesis to suppress the matched disturbances. Then, the digital-redesign controller for the integrated H-infinity and sliding-mode control has been newly proposed to suppress the matched and/or mismatched disturbances. Finally, a hardware implementation of the digital-redesign controller for the integrated H2 and sliding-mode control methodology has been successfully realized to control the buck converter.
[1] Bouguenna, I. F., Azaiz, A., Tahour, A., and Larbaoui, A., “Robust neuro-fuzzy sliding mode control with extended state observer for an electric drive system,” Energy, vol. 169, pp. 1054-1063, 2019.
[2] Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishnan, V., “Linear Matrix Inequalities in System and Control Theory; the Society for Industrial and Applied Mathematics,” Philadelphia, Pennsylvania, USA, 1994.
[3] Chakrabarty, S., and Bartoszewicz, A, “Improved robustness and performance of discrete time sliding mode control systems,” ISA Transactions, vol. 65, pp. 143-149, 2016.
[4] Das, S., Salim Qureshi, M., and Swarnkar, P., “Design of integral sliding mode control for DC-DC converters,” materialstoday: PROCEEDINGS, vol. 5, pp. 4290-4298, 2018.
[5] Du, H., Yu, X., Chen, M. Z. Q., and Li, S., “Chattering-free discrete-time sliding mode control,” Automatica, vol. 68, pp. 87-91, 2016.
[6] Ding, S., Zheng, W. X., Sun, J., and Wang, J., “Second-order sliding-mode controller design and its implementation for buck converters,” IEEE Transactions on Industrial Informatics, vol. 14, no. 5, pp. 1990-2000, 2018.
[7] Ebrahimzadeh, F., Tsai, J. S. H., Liao, Y. T., Chung, M. C., Guo, S. M., Shieh, L. S., and Wang, L., “A generalized optimal linear quadratic tracker with universal applications part 1 continuous time systems,” International Journal of Systems Science, vol. 48, pp. 376-396, 2017.
[8] Fang, J. S., Tsai, J. S. H., Yan, J. J., Tzou, C. H., and Guo, S. M., “Design of Robust Trackers and Unknown Nonlinear Perturbation Estimators for a Class of Nonlinear Systems: HTRDNA Algorithm for Tracker Optimization,” Mathematics, vol. 7, 2019.
[9] Ginoya, D., Shendge, P. D., Phadke, S. B., “Disturbance observer based sliding mode control of nonlinear mismatched uncertain systems,” Communications in Nonlinear Science Numerical Simulation, vol. 26, pp. 98-107, 2015.
[10] Guo, S. M., Shieh, L. S., Chen, G., and Lin, C. F. “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, pp. 1557-1569, 2000.
[11] Guesmi, K., Essounbouli, N., and Hamzaoui, A., “Systematic design approach of fuzzy PID stabilizer for DC–DC converters,” Energy Conversion and Management, vol. 49, pp. 2880-2889, 2008.
[12] Jie, W., Kim, H. H., Dad, K. and Lee, M. C., “Terminal Sliding Mode Control with Sliding Perturbation Observer for a Hydraulic Robot Manipulator,” IFAC-PapersOnLine, vol. 51, pp. 7-12, 2018.
[13] Kim, K. S., and Rew, K. H., “Reduced order disturbance observer for discrete-time linear systems,” Automatica, vol. 49, pp. 968-975, 2013.
[14] Li, X., Wang, C., Wen, Q., Yu, X., and Wang, B., “Digital Redesign of Sliding Mode Control of LTI Systems,” Proceedings of the 6th World Congress On Intelligent Control and Automation, Dalian, China, 2006.
[15] Li, S., Du, H., and Yu, X., “Discrete-Time Terminal Sliding Mode Control Systems Based on Euler’s Discretization,” IEEE Transactions on Automatic Control, vol. 59, pp. 546–552, 2014.
[16] Liu, Y. J., and Tong, S., “Barrier Lyapunov Functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints,” Automatica, Vol. 64. pp. 70-75, 2016.
[17] Liu, Y. J. and Tong, S., “Micro-/Nanopositioning Using Model Predictive Output Integral Discrete Sliding Mode Control,” IEEE Transactions on Industrial Electronics, vol. 59, pp. 1161-1170, 2012.
[18] Mohan N., Undeland T., and Robbins W., “Power electronics,” Hoboken, NJ: John Wiley & Sons Inc, 2003.
[19] Niu, B., Zhao, P., Liu, J. D., Ma, H. J., and Liu, Y. J., “Global adaptive control of switched uncertain nonlinear systems: An improved MDADT method,” Automatica, vol. 115, 2020.
[20] Nizami, T. K., and Mahanta, C., “An intelligent adaptive control of DC–DC buck converters,” Journal of the Franklin Institute, vol. 353, pp. 2588-2613, 2016.
[21] Norouzi, A., Ebrahimi, K., and Koch, C. R., “Integral Discrete-time Sliding Mode Control of Homogeneous Charge Compression Ignition (HCCI) Engine Load and Combustion Timing,” IFAC-PapersOnLine, vol. 52, pp. 153-158, 2019.
[22] Naik, B.B., and Mehta, A. J., “Sliding mode controller with modified sliding function for DC-DC BuckConverter,” ISA Transactions, vol. 70, pp. 279-287, 2017.
[23] Pai, M. C., “Discrete-time output feedback quasi-sliding mode control for robust tracking and model following of uncertain systems,” Journal of the Franklin Institute, vol. 351, pp. 2623-2639, 2014.
[24] Qu, Q., Zhang, H., Yu, R., and Liu, Y., “Neural network-based sliding mode control for nonlinear systems with actuator faults and unmatched disturbances,” Neurocomputing, vol. 275, pp. 2009-2018, 2018.
[25] Rahmani, B., “Robust output feedback sliding mode control for uncertain discrete time systems,” Nonlinear Analysis: Hybrid Systems, vol. 24, pp. 83-99, 2017.
[26] Skoczowski, S., and Domek, S., “Robust Model Following Control System,” IFAC Proceedings Volumes, vol. 33, pp. 143-148, 2000.
[27] Senouci, A., and Boukabou, A., “Fuzzy modeling, stabilization and synchronization of multi-scroll chaotic systems,” Optik, vol. 127, pp. 5351-5358, 2016.
[28] Stoorvogel, A. A., “Stabilizing solutions of the algebraic Riccati equation,” Automatica, vol. 240, pp. 153-172, 1996.
[29] Tsai, J. S. H., Fang, J. S., Yan, J. J., Dai, M. C, Guo, S. M., and Shieh, L. S., “Hybrid robust discrete sliding mode control for generalized continuous chaotic systems subject to external disturbances,” Nonlinear Analysis: Hybrid Systems, vol. 29, pp. 74-84, 2018.
[30] Xi, C., and Dong, J, “Adaptive neural network-based control of uncertain nonlinear systems with time-varying full-state constraints and input constraint,” Neurocomputing, vol. 357, pp. 108-115, 2019.
[31] Yang, J., Li, S., and Yu, X., “Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances,” Automatica, vol. 49, pp. 2287-2291, 2013.
[32] Yan, J. J., Chen, C. Y., and Tsai, J. S. H., “Hybrid chaos control of continuous unified chaotic systems using discrete rippling sliding mode control,” Nonlinear Analysis: Hybrid Systems, vol. 22, pp. 276-283, 2016.
[33] Yan, T. H., and He, B., “The Discrete-Time Sliding Mode Control with Computation Time Delay for Repeatable Run-Out Compensation of Hard Disk Drives,” Mathematical Problems in Engineering, 2013, http://dx.doi.org/10.1155/2013/505846.
[34] Yin, Q., Wang, M., Li, X. and Sun, G., “Neural network adaptive tracking control for a class of uncertain switched nonlinear systems,” Neurocomputing, vol. 301, pp. 1-10, 2018.
[35] Zhao, L., and Okubo, S., “A Model Following Control System for Nonlinear Descriptor Systems,” Energy Procedia, vol. 17, pp. 1724-1731, 2012.
[36] Zhang, M., Gan, M. G., Chen, J., and Jiang, Z. P., “Data-driven adaptive optimal control of linear uncertain systems with unknown jumping dynamics,” Journal of the Franlin Institute, vol. 356, pp. 6087-6105, 2019.
[37] Zang, L., Wang, Z., Li, S., Ding, S., and Du, H., “Universal finite-time observer based second-order sliding mode control for DC-DC buck converters with only output voltage measurement,” Journal of the Franklin Institute, Available online 16 December 2019, https://doi.org/10.1016/j.jfranklin.2019.11.057.