簡易檢索 / 詳目顯示

研究生: 陳葆疄
Chen, Pao-Lin
論文名稱: 不確定系統的混合模型跟隨控制:理論與實現
Hybrid Model Following Control for Uncertain Systems: Theorem and Implementation
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 82
中文關鍵詞: 滑模控制H-infinity 控制器追蹤器設計數位重新設計線性二次追蹤器模型跟隨控制降壓變換器
外文關鍵詞: Sliding mode control, H-infinity control, Digital redesign, Linear quadratic analog tracker, Model following control, Buck converter
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,針對採樣不確定系統,提出了基於模型跟隨控制的理論與實現。首先,針對採樣不確定系統,探討混合模型跟隨控制結合數位重新再設計的滑模控制之穩定度。接著,為了抑制匹配干擾,本文中提出一種結合H2和滑模控制的數位重新再設計控制器。然後,提出了結合H-infinity和滑模控制的數位重新再設計控制器,以抑制匹配和非匹配的干擾。最後,成功地實現了結合H2和滑模控制的數位重新再設計的控制方法,應用在控制降壓變換器

    Theorem investigation and implementation based on the model-following control for the sampled-data uncertain systems have been proposed in this thesis. First, the stability of a hybrid model-following control integrated with the digital-redesign sliding-mode control for the sampled-data uncertain system is investigated. Next, the digital-redesign controller for the integrated H2 and sliding-mode control has been newly proposed in this thesis to suppress the matched disturbances. Then, the digital-redesign controller for the integrated H-infinity and sliding-mode control has been newly proposed to suppress the matched and/or mismatched disturbances. Finally, a hardware implementation of the digital-redesign controller for the integrated H2 and sliding-mode control methodology has been successfully realized to control the buck converter.

    摘要 I Abstract II Acknowledgment III List of Contents IV List of Figures VI List of Tables IX Symbols and Abbreviations X Chapter 1 Introduction 1 Chapter 2 Hybrid H2 Model-Following Control for Uncertain Systems Based on Digital-Redesign Sliding-Mode Control 5 2.1. Problem description 6 2.2. Continuous-time H2 sliding mode control 8 2.3. Digital-redesign H2 sliding-mode controller design 9 2.4. Numerical simulations 12 Chapter 3 Hybrid H-infinity Model-Following Control for Uncertain Systems Based on Digital-Redesign sliding-Mode Control 22 3.1. Problem description 23 3.2. Continuous-time H-infinity sliding mode control 25 3.3. Digital-redesign H-infinity sliding mode controller design 29 3.4. Numerical simulations 36 Chapter 4 Hybrid H2 Model-Following Control for the Buck Converter Based on Digital-Redesign Sliding-Mode Control 50 4.1. The description of buck converter 51 4.2. Problem description 54 4.3. Improved continuous-time H2 sliding-mode control 56 4.4. Digital redesign of the improved continuous-time H2 sliding-mode controller design 58 4.5. Simulation and experiment results 62 4.5.1. Simulink results and analysis 63 4.5.2. Experiment results and analysis 68 Chapter 5 78 Reference 79

    [1] Bouguenna, I. F., Azaiz, A., Tahour, A., and Larbaoui, A., “Robust neuro-fuzzy sliding mode control with extended state observer for an electric drive system,” Energy, vol. 169, pp. 1054-1063, 2019.
    [2] Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishnan, V., “Linear Matrix Inequalities in System and Control Theory; the Society for Industrial and Applied Mathematics,” Philadelphia, Pennsylvania, USA, 1994.
    [3] Chakrabarty, S., and Bartoszewicz, A, “Improved robustness and performance of discrete time sliding mode control systems,” ISA Transactions, vol. 65, pp. 143-149, 2016.
    [4] Das, S., Salim Qureshi, M., and Swarnkar, P., “Design of integral sliding mode control for DC-DC converters,” materialstoday: PROCEEDINGS, vol. 5, pp. 4290-4298, 2018.
    [5] Du, H., Yu, X., Chen, M. Z. Q., and Li, S., “Chattering-free discrete-time sliding mode control,” Automatica, vol. 68, pp. 87-91, 2016.
    [6] Ding, S., Zheng, W. X., Sun, J., and Wang, J., “Second-order sliding-mode controller design and its implementation for buck converters,” IEEE Transactions on Industrial Informatics, vol. 14, no. 5, pp. 1990-2000, 2018.
    [7] Ebrahimzadeh, F., Tsai, J. S. H., Liao, Y. T., Chung, M. C., Guo, S. M., Shieh, L. S., and Wang, L., “A generalized optimal linear quadratic tracker with universal applications part 1 continuous time systems,” International Journal of Systems Science, vol. 48, pp. 376-396, 2017.
    [8] Fang, J. S., Tsai, J. S. H., Yan, J. J., Tzou, C. H., and Guo, S. M., “Design of Robust Trackers and Unknown Nonlinear Perturbation Estimators for a Class of Nonlinear Systems: HTRDNA Algorithm for Tracker Optimization,” Mathematics, vol. 7, 2019.
    [9] Ginoya, D., Shendge, P. D., Phadke, S. B., “Disturbance observer based sliding mode control of nonlinear mismatched uncertain systems,” Communications in Nonlinear Science Numerical Simulation, vol. 26, pp. 98-107, 2015.
    [10] Guo, S. M., Shieh, L. S., Chen, G., and Lin, C. F. “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, pp. 1557-1569, 2000.
    [11] Guesmi, K., Essounbouli, N., and Hamzaoui, A., “Systematic design approach of fuzzy PID stabilizer for DC–DC converters,” Energy Conversion and Management, vol. 49, pp. 2880-2889, 2008.
    [12] Jie, W., Kim, H. H., Dad, K. and Lee, M. C., “Terminal Sliding Mode Control with Sliding Perturbation Observer for a Hydraulic Robot Manipulator,” IFAC-PapersOnLine, vol. 51, pp. 7-12, 2018.
    [13] Kim, K. S., and Rew, K. H., “Reduced order disturbance observer for discrete-time linear systems,” Automatica, vol. 49, pp. 968-975, 2013.
    [14] Li, X., Wang, C., Wen, Q., Yu, X., and Wang, B., “Digital Redesign of Sliding Mode Control of LTI Systems,” Proceedings of the 6th World Congress On Intelligent Control and Automation, Dalian, China, 2006.
    [15] Li, S., Du, H., and Yu, X., “Discrete-Time Terminal Sliding Mode Control Systems Based on Euler’s Discretization,” IEEE Transactions on Automatic Control, vol. 59, pp. 546–552, 2014.
    [16] Liu, Y. J., and Tong, S., “Barrier Lyapunov Functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints,” Automatica, Vol. 64. pp. 70-75, 2016.
    [17] Liu, Y. J. and Tong, S., “Micro-/Nanopositioning Using Model Predictive Output Integral Discrete Sliding Mode Control,” IEEE Transactions on Industrial Electronics, vol. 59, pp. 1161-1170, 2012.
    [18] Mohan N., Undeland T., and Robbins W., “Power electronics,” Hoboken, NJ: John Wiley & Sons Inc, 2003.
    [19] Niu, B., Zhao, P., Liu, J. D., Ma, H. J., and Liu, Y. J., “Global adaptive control of switched uncertain nonlinear systems: An improved MDADT method,” Automatica, vol. 115, 2020.
    [20] Nizami, T. K., and Mahanta, C., “An intelligent adaptive control of DC–DC buck converters,” Journal of the Franklin Institute, vol. 353, pp. 2588-2613, 2016.
    [21] Norouzi, A., Ebrahimi, K., and Koch, C. R., “Integral Discrete-time Sliding Mode Control of Homogeneous Charge Compression Ignition (HCCI) Engine Load and Combustion Timing,” IFAC-PapersOnLine, vol. 52, pp. 153-158, 2019.
    [22] Naik, B.B., and Mehta, A. J., “Sliding mode controller with modified sliding function for DC-DC BuckConverter,” ISA Transactions, vol. 70, pp. 279-287, 2017.
    [23] Pai, M. C., “Discrete-time output feedback quasi-sliding mode control for robust tracking and model following of uncertain systems,” Journal of the Franklin Institute, vol. 351, pp. 2623-2639, 2014.
    [24] Qu, Q., Zhang, H., Yu, R., and Liu, Y., “Neural network-based sliding mode control for nonlinear systems with actuator faults and unmatched disturbances,” Neurocomputing, vol. 275, pp. 2009-2018, 2018.
    [25] Rahmani, B., “Robust output feedback sliding mode control for uncertain discrete time systems,” Nonlinear Analysis: Hybrid Systems, vol. 24, pp. 83-99, 2017.
    [26] Skoczowski, S., and Domek, S., “Robust Model Following Control System,” IFAC Proceedings Volumes, vol. 33, pp. 143-148, 2000.
    [27] Senouci, A., and Boukabou, A., “Fuzzy modeling, stabilization and synchronization of multi-scroll chaotic systems,” Optik, vol. 127, pp. 5351-5358, 2016.
    [28] Stoorvogel, A. A., “Stabilizing solutions of the algebraic Riccati equation,” Automatica, vol. 240, pp. 153-172, 1996.
    [29] Tsai, J. S. H., Fang, J. S., Yan, J. J., Dai, M. C, Guo, S. M., and Shieh, L. S., “Hybrid robust discrete sliding mode control for generalized continuous chaotic systems subject to external disturbances,” Nonlinear Analysis: Hybrid Systems, vol. 29, pp. 74-84, 2018.
    [30] Xi, C., and Dong, J, “Adaptive neural network-based control of uncertain nonlinear systems with time-varying full-state constraints and input constraint,” Neurocomputing, vol. 357, pp. 108-115, 2019.
    [31] Yang, J., Li, S., and Yu, X., “Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances,” Automatica, vol. 49, pp. 2287-2291, 2013.
    [32] Yan, J. J., Chen, C. Y., and Tsai, J. S. H., “Hybrid chaos control of continuous unified chaotic systems using discrete rippling sliding mode control,” Nonlinear Analysis: Hybrid Systems, vol. 22, pp. 276-283, 2016.
    [33] Yan, T. H., and He, B., “The Discrete-Time Sliding Mode Control with Computation Time Delay for Repeatable Run-Out Compensation of Hard Disk Drives,” Mathematical Problems in Engineering, 2013, http://dx.doi.org/10.1155/2013/505846.
    [34] Yin, Q., Wang, M., Li, X. and Sun, G., “Neural network adaptive tracking control for a class of uncertain switched nonlinear systems,” Neurocomputing, vol. 301, pp. 1-10, 2018.
    [35] Zhao, L., and Okubo, S., “A Model Following Control System for Nonlinear Descriptor Systems,” Energy Procedia, vol. 17, pp. 1724-1731, 2012.
    [36] Zhang, M., Gan, M. G., Chen, J., and Jiang, Z. P., “Data-driven adaptive optimal control of linear uncertain systems with unknown jumping dynamics,” Journal of the Franlin Institute, vol. 356, pp. 6087-6105, 2019.
    [37] Zang, L., Wang, Z., Li, S., Ding, S., and Du, H., “Universal finite-time observer based second-order sliding mode control for DC-DC buck converters with only output voltage measurement,” Journal of the Franklin Institute, Available online 16 December 2019, https://doi.org/10.1016/j.jfranklin.2019.11.057.

    下載圖示 校內:2025-08-06公開
    校外:2025-08-06公開
    QR CODE