簡易檢索 / 詳目顯示

研究生: 賴柏憲
Lai, Po-Hsien
論文名稱: 異質結構場效電晶體之表面披覆效應與熱穩定度之研究
Investigation of Surface Passivation Effects and Thermal Stability on Heterostructure Field-Effect Transistors (HFETs)
指導教授: 劉文超
Liu, Wen-Chau
鄭岫盈
Cheng, Shiou-Ying
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 151
中文關鍵詞: 高電子移動率電晶體表面披覆硫化披覆熱穩定度
外文關鍵詞: formal passivation, HEMT, thermal stability, sulfur passivation
相關次數: 點閱:86下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用有機金屬化學汽相沉積法及分子束磊晶法研製三種以砷化鎵材料為基礎之異質結構場效電晶體。藉由建構不同的表面披覆技術及蕭特基閘極金屬工程,完整的探討其對元件特性之影響,包含直流、微波、熱穩定度及可靠度特性…等。實驗上,所研製的元件展現出良好的元件特性、高溫操作能力及溫度不相依性。而這些優點顯示元件非常適合應用於高速、高頻率及高溫電子電路中。
    首先,在磷化銦鎵/砷化銦鎵/砷化鎵異質結構場效電晶體上,使用硫化銨溶液對磷化銦鎵材料進行表面披覆處理,研究其對元件特性所造成的影響,並將其結果與傳統製程元件做比較。就磷化銦鎵材料而言,硫化處理能更進一步地減少表面復合速度及表面態位密度。因此,具有表面硫化披覆結構之元件在直流、微波及不同溫度環境下均顯示出良好的操作特性。
    其次,探討不同溫度環境下表面披覆結構對砷化鋁鎵/砷化銦鎵/砷化鎵擬晶性高電子移動率場效電晶體元件特性所造成的影響。在製程中對元件之砷化鋁鎵蕭特基接觸層表面進行披覆處理,此步驟能夠有效清除原生氧化物,於砷化鋁鎵表面形成Ⅲ-硫鍵結物及氮化矽保護層,進而避免砷化鋁鎵表面因接觸空氣而再度氧化。實驗結果顯示,元件經過表面披覆處理之後可得到較佳的元件特性、高溫操作能力及相對較佳的可靠度及熱穩定度。
    最後,為了改善變晶性高電子移動率電晶體的熱穩定度及撞擊游離效應,於研製的元件上嘗試使用不同的蕭特基閘極金屬,分析並比較其對特性的影響。從實驗結果發現,在不同電場及溫度環境下,元件之撞擊游離效應主要是由臨限活化游離能及熱載子總量所主導。因此,藉由蒸鍍蕭特基能障較大的閘極金屬時,元件之閘極空乏區域得以增大,進而抑制通道中的載子數量,並降低撞擊游離效應的產生,同時元件特性也隨之改善。此外,隨著通道電場降低或溫度增加時,元件之撞擊游離效應亦相對減小。

    In this dissertation, three different GaAs-based heterostructure field-effect transistors (HFETs), grown by a metal organic chemical vapor deposition (MOCVD) and a molecular beam epitaxy (MBE) system, were fabricated and studied. Through the surface passivation and Schottky gate metals engineering, the device characteristics including the DC, microwave, thermal stability, and reliability performance are investigated. Experimentally, the studied devices show good device characteristics, high temperature operation capability, and relatively temperature-insensitive behaviors. These advantages suggest that the proposed devices are suitable for high-speed, high-frequency, and high-temperature electronics applications.
    First, the temperature-dependent characteristics of InGaP/InGaAs/GaAs HFETs, using the (NH4)2Sx solution to form the InGaP surface passivation, are studied and demonstrated. For promising wide-gap InGaP material, the surface recombination velocity and surface states are reduced by sulfur passivation. Hence, the sulfur-passivated devices show improved DC and microwave performance with wide operation region. In addition, the remarkably lower temperature variation coefficients are observed over the operating temperature ranged from 300 to 510K.
    Second, the temperature-dependent characteristics of formal-passivated AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistors (PHEMTs) are studied and demonstrated. Based on the surface covering with sulfur and SiNx layers, the formal passivation is employed to remove the native oxide on the AlGaAs surface and prevent the surface from oxidation against ambient atmosphere over a long period of time. It is known that, from experimental results, the formal-passivated PHEMTs exhibit better device performance, higher temperature operation capability, and relatively long-term and thermally stable characteristics.
    Finally, the thermal stability performance and gate-metals-related impact ionization in metamorphic high electron mobility transistors (MHEMTs) with various Schottky gate metals are fabricated and systematically studied. From experimental results, the electric field and temperature dependences of impact ionization mechanisms in MHEMT's operation are dominated by the ionization threshold energy and hot electron population. By using the higher Schottky barrier height of gate metals, the channel depletion region beneath the gate is extended. This indeed decreases drain current in the channel and results in the suppression of impact ionization effect. Simultaneously, better DC and microwave characteristics of the studied devices are obtained. Besides, the impact ionization-induced gate current is decreased with reducing the electric field and/or increasing the temperature.

    Abstract Table Lists Figure Captions Chapter 1. Introduction ………………………………………………………………………… 1 1-1. Thesis Organizations ……………………………………………………………………… 3 Chapter 2. Characteristics of Sulfur-Passivated InGaP/InGaAs/GaAs Heterostructure Field-Effect Transistors (HFETs) 2-1. Introduction ……………………………………………………………………………… 6 2-2. Material Growth and Device Fabrication ………………………………………………… 7 2-3. Experimental Results and Discussion …………………………………………………… 9 2-4. Summary ………………………………………………………………………………… 19 Chapter 3. Improved Temperature-Dependent Characteristics of Formal-Passivated AlGaAs/InGaAs/GaAs Pseudomorphic High Electron Mobility Transistors (PHEMTs) 3-1. Introduction ……………………………………………………………………………… 20 3-2. Material Growth and Characterizations …………………………………………………. 22 3-3. Pt/Au-Gated PHEMTs …………………………………………………………………… 24 3-3-1. Device Fabrication …………………………………………………………………… 24 3-3-2. Experimental Results and Discussion ………………………………………………… 25 3-3-3. Summary ……………………………………………………………………………… 35 3-4. Ti/Pt/Au-Gated PHEMTs ………………………………………………………………… 36 3-4-1. Device Fabrication …………………………………………………………………… 36 3-4-2. Experimental Results and Discussion ………………………………………………… 37 3-4-3. Summary ……………………………………………………………………………… 45 3-5. Conclusion ……………………………………………………………………………… 46 Chapter 4. Thermal Stability Performance of Metamorphic High Electron Mobility Transistors (MHEMTs) with Different Schottky Gate Metals 4-1. Introduction ……………………………………………………………………………… 48 4-2. Material Growth and Device Fabrication ………………………………………………… 49 4-3. Experimental Results and Discussion …………………………………………………… 51 4-4. Summary ………………………………………………………………………………… 58 Chapter 5. Conclusion and Prospect 5-1. Conclusion ……………………………………………………………………………… 60 5-2. Prospect ………………………………………………………………………………… 62 References …………………………………………………………………………………… 63 Tables Figures Publication List

    [1] K. H. Yu, K. W. Lin, C. C. Cheng, K. P. Lin, C. H. Yen, C. Z. Wu, and W. C. Liu, “InGaP/GaAs camel-like field-effect transistor for high-breakdown and high-temperature applications,” Electron. Lett., vol. 36, pp. 1886-1888, 2000.
    [2] K. W. Lin, K. H. Yu, W. L. Chang, C. C. Cheng, K. P. Lin, C. H. Yen, W. S. Lour, and W. C. Liu, “Characteristics and comparison of In0.49Ga0.51P/GaAs single and double delta-doped pseudomorphic high electron mobility transistors,” Solid-State Electron., vol. 45, pp. 309-314, 2001.
    [3] W. C. Liu, W. L. Chang, W. S. Lour, K. H. Yu, K. W. Lin, C. C. Cheng, and S. Y. Cheng, “Temperature-dependence investigation of a high-performance inverted delta-doped V-shaped GaInP/InxGa1-xAs/GaAs pseudomorphic high electron mobility transistor,” IEEE Trans. Electron Devices, vol. 48, pp. 1290-1296, 2001.
    [4] W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, K. P. Lin, C. H. Yen, C. C. Cheng, and K. B. Thei, “Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel HFET,” IEEE Trans. Electron Devices, vol. 48, pp. 2677-2683, 2001.
    [5] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP-InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Devices, vol. 50, pp. 1717-1723, 2003.
    [6] J. H. Tsai, “A novel InGaP/InGaAs/GaAs double d-doped pHEMT with camel-like gate structure,” IEEE Electron Device Lett., vol. 24, pp. 1-3, 2003.
    [7] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, P. H. Lai, C. I. Kao, and W. C. Liu, “Study of InGaP/InGaAs double delta-doped channel heterostructure field-effect transistors,” J. Vac. Sci. Technol. B, vol. 22, pp. 832-837, 2004.
    [8] W. C. Hsu, D. H. Huang, Y. S. Lin, Y. J. Chen, J. C. Huang, and C. L. Wu, “Performance improvement in tensile-strained In0.5Al0.5As/InxGa1-xAs/In0.5Al0.5As metamorphic HEMT,” IEEE Trans. Electron Devices, vol. 53, pp. 406-412, 2006.
    [9] Y. S. Lin and Y. L. Hsieh, “Effect of temperature on novel InAlGaP/GaAs/InGaAs camel-gate pseudomorphic high-electron-mobility transistors,” J. Electrochem. Soc., vol. 153, pp. G498-G501, 2006.
    [10] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hong, R. C. Liu, and W. C. Liu, “Pd-oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor (HEMT)-based hydrogen sensor,” IEEE Sensors J., vol. 6, pp. 287-292, 2006.
    [11] J. H. Tsai, S. Y. Chiu, W. S. Lour, D. F. Guo, and W. C. Liu, “Application of double camel-like gate structures for a GaAs field-effect transistor with extremely high potential barrier height and gate turn-on voltage,” Semicond. Sci. Technol., vol. 21, pp. 1132-1138, 2006.
    [12] H. R. Chen, M. K. Hsu, S. Y. Chiu, W. T. Chen, G. H. Chen, Y. C. Chang, and W. S. Lour, “InGaP/InGaAs pseudomorphic heterodoped-channel FETs with a field plate and a reduced gate length by splitting gate metal,” IEEE Electron Device Lett., vol. 27, pp. 948-950, 2006.
    [13] K. H. Su, W. C. Hsu, C. S. Lee, T. Y. Wu, Y. H. Wu, L. Chang, R. S. Hsiao, J. F. Chen, and T. W. Chi, “A novel dilute antimony channel In0.2Ga0.8AsSb/GaAs HEMT,” IEEE Electron Device Lett., vol. 28, pp. 96-99, 2007.
    [14] M. K. Hsu, H. R. Chen, S. Y. Chiu, W. T. Chen, W. C. Liu, J. H. Tsai, and W .S. Lour, “Characteristics of mesa- and air-type In0.5Al0.5As/In0.5Ga0.5As metamorphic HEMTs with or without a buried gate,” Semicond. Sci. Technol., vol. 22, pp. 35-42, 2007.
    [15] H. Wang, G. I. Ng, M. Gilbert, and P. J. O’Sullivan, “Suppression of I-V kink in doped channel InAlAs/InGaAs/InP heterojunction field-effect transistor (HFET) using silicon nitride passivation,” Electron. Lett., vol. 32, pp. 2026-2027, 1996.
    [16] K. Hyungtak, R. M. Thompson, V. Tilak, T. R. Prunty, J. R. Shealy, and L. F. Eastman, “Effects of SiN passivation and high-electric field on AlGaN-GaN HFET degradation,” IEEE Electron Device Lett., vol. 24, pp. 421-423, 2003.
    [17] M. K. Tsai, S. W. Tan, Y. W. Wu, Y. J. Yang, and W. S. Lour, “Improvements in direct-current characteristics of Al0.45Ga0.55As-GaAs digital-graded superlattice-emitter HBTs with reduced turn-on voltage by wet oxidation,” IEEE Trans. Electron Devices, vol. 50, pp. 303-309, 2003.
    [18] C. Y. Chen, S. I. Fu, S. Y. Cheng, C. Y. Chang, C. H. Tsai, C. H. Yen, S. F. Tsai, R. C. Liu, and W. C. Liu, “Influences of surface sulfur treatments on the temperature-dependent characteristics of HBTs,” IEEE Trans. Electron Devices, vol. 51, pp. 1963-1971, 2004.
    [19] M. Higashiwaki, N. Hirose, and T. Matsui, “Cat-CVD SiN-passivated AlGaN-GaN HFETs with thin and high Al composition barrier Layers,” IEEE Electron Device Lett., vol. 26, pp. 139-141, 2005.
    [20] S. W. Tan, H. R. Chen, W. T. Chen, M. K. Hsu, A. H. Lin, and W. S. Lour, “Characterization and modeling of three-terminal heterojunction phototransistors using an InGaP layer for passivation,” IEEE Trans. Electron Devices, vol. 52, pp. 204-210, 2005.
    [21] S. Y. Cheng, S. I. Fu, T. P. Chen, P. H. Lai, R. C. Liu, K. Y. Chu, L. Y. Chen, and W. C. Liu, “The effect of sulfur treatment on the temperature-dependent performance of InGaP/GaAs HBTs,” IEEE Trans. Device Mater. Reliab., vol. 6, pp. 500-508, 2006.
    [22] T. P. Chen, S. I. Fu, W. S. Lour, J. H. Tsai, D. F. Guo, and W. C. Liu, “Temperature effect of a heterojunction bipolar transistor with an emitter-edge-thinning structure,” Electrochem. Solid State Lett., vol. 10, pp. H56-H58, 2007.
    [23] T. P. Chen, S. I. Fu, S. Y. Cheng, J. H. Tsai, D. F. Guo, W. S. Lour, and W. C. Liu, “Surface treatment effect on temperature-dependent properties of InGaP/GaAs heterobipolar transistors,” J. Appl. Phys., vol. 101, pp. 034501-1-034501-5, 2007.
    [24] Y. Dong, X. M. Ding, X. Y. Hou, Y. Li, and X. B. Li, “Sulfur passivation of GaAs metal-semiconductor field-effect transistor,” Appl. Phys. Lett., vol. 77, pp. 3839-3841, 2000.
    [25] H. Oigawa, J. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (NH4)2Sx treatment on the surface of Ш-V compound semiconductors,” Jpn. J. Appl. Phys., vol. 30, pp. L322-L325, 1991.
    [26] X. Zhang, A. Z. Li, C. Lin, Y. L. Zheng, G. Y. Xu, M. Qi, and Y. G. Zhang, “The effects of (NH4)2S passivation treatments on the dark current-voltage characteristics of InGaAsSb PIN detectors,” J. Crystal Growth, vol. 251, pp. 782-786, 2003.
    [27] J. Fan, Y. Kurata, and Y. Nannichi, “Marked reduction of the surface/interface states of GaAs by (NH4)2Sx treatment,” Jpn. J. Appl. Phys., vol. 28, pp. L2255-L2257, 1989.
    [28] Y. J. Chen, W. C. Hsu, C. S. Lee, T. B. Wang, C. H. Tseng, J. C. Huang, D. H. Huang, and C. L. Wu, “Gate-alloy-related kink effect for metamorphic high-electron-mobility transistors,” Appl. Phys. Lett., vol. 85, pp.5087-5089, 2004.
    [29] Y. J. Chen, W. C. Hsu, Y. W. Chen, Y. S. Lin, R. T. Hsu, and Y. H. Wu,” InAlAs/InGaAs doped channel heterostructure for high-linearity, high-temperature and high-breakdown operations,” Solid-State Electronic., 49, pp.163-166, 2005.
    [30] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, Y. S. Lin, and C. L. Wu, “High-temperature thermal stability performance in d-doped In0.425Al0.575As/In0.65Ga0.35As metamorphic HEMT,” IEEE Electron Device Lett., vol. 26, pp. 59-61, 2005.
    [31] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, J. C. Huang, D. H. Huang, K. H. Su, Y. S. Lin, and C. L. Wu, “Characteristics of In0.425Al0.575As/InxGa1-xAs Metamorphic HEMTs with Pseudomorphic and Symmetrically-Graded Channels,” IEEE Trans. Electron Devices, vol. 52, pp. 1079-1086, 2005.
    [32] S. J. Yu, W.C. Hsu, Y. J. Chen, and C. L. Wu,” High power and high breakdown delta-doped In0.35Al0.65As/In0.35Ga0.65As metamorphic HEMT,” Solid-State Electronic., 50, pp.291-296, 2006.
    [33] C. S. Lee, W. C. Hsu, K. H. Su, J. C. Huang, D. H. Huang, and Y. J. Chen, “Ni/Au-Gate In0.45Al0.55As/In0.53Ga0.47As/InAlGaAs/GaAs metamorphic high-electron-mobility transistors,” Journal of the Korean Physical Society, vol. 48, pp. 653-657, 2006.
    [34] C. S. Lee, Y. J. Cheng, W. C. Hsu, K. H. Su, J. C. Huang, D. H. Huang, and C. L. Wu, “High-temperature threshold characteristics of a symmetrically graded InAlAs/InxGa1-xAs/GaAs metamorphic high electron mobility transistor,” Appl. Phys. Lett., vol. 88, pp. 223506-1-223506-3, 2006.
    [35] M. K. Hsu, H. R. Chen, S. Y. Chiou, W. T. Chen, G. H. Chen, Y. C. Chang, and W. S. Lour, “Gate-metal formation-related kink effect and gate current on In0.5Al0.5As/In0.5Ga0.5As metamorphic high electron mobility transistor performance,” Appl. Phys. Lett., vol. 89, pp. 033509-1-033509-3, 2006.
    [36] K. H. Su, W. C. Hsu, C. S. Lee, I. L. Chen, Y. J. Chen, and C.L. Wu, “Comparative studies of delta-doped In0.45Al0.55As/In0.53Ga0.47As/GaAs metamorphic HEMTs with Au, Ti/Au, Ni/Au, and Pt/Au gates”, J. Electrochem. Soc., vol. 153, pp. G996-G1000, 2006.
    [37] M. H. Somerville, A. Ernst, and J. A. Del Alamo, “A physical model for the kink effect in InAlAs/InGaAs HEMTs,” IEEE Trans. Electron. Devices, vol. 47, pp. 922-930, 2000.
    [38] Y. K. Kim, S. Kim, J. M. Seo, S. Ahn, K. J. Kim, T. K. Kang, and B. Kim, “Metal-dependent Fermi-level movement in the metal/sulfur-passivated InGaP contact,” J. Vac. Sci. Technol. A, vol. 15, pp. 1124-1128, 1997.
    [39] S. J. Pearton, F. Ren, W. S. Hobson, C. R. Abernathy, and U. K. Chakrabarti, “Comparison of surface recombination velocities in InGaP and AlGaAs mesa diodes,” J. Vac. Sci. Technol. B, vol. 12, pp. 142-146, 1994.
    [40] C. T. Lee, M. H. Lan, and C. D. Tsai, “Improved performances of InGaP Schottky contact with Ti/Pt/Au metals and msm photodetectors by (NH4)2Sx treatment,” Solid-State Electron., vol. 41, pp. 1715-1719, 1997.
    [41] H. Mizuta, K. Yamaguchi, M. Yamane, T. Tanoue, and S. Takahashi, “Two-dimensional numerical simulation of Fermi-level pinning phenomena due to DX centers in AlGaAs/GaAs HEMTs,” IEEE Trans. Electron Devices, vol. 36, pp. 2307-2314, 1989.
    [42] Y. J. Chan, D. Pavlidis, M. Razeghi, and F. Omnes, “Ga0.51In0.49P/GaAs HEMT's exhibiting good electrical performance at cryogenic temperatures,” IEEE Trans. Electron Devices, vol. 37, pp. 2141-2147, 1990.
    [43] C. Canali, F. Magistrali, A. Paccagnella, M. Sangalli, C. Tedesco, and E. Zanoni, “Trap-related effects in AlGaAs/GaAs HEMTs,” IEE Proceedings G, Circuits, Devices and Systems, vol. 138, pp. 104-108, 1991.
    [44] M. R. Ravi, A. DasGupta, and N. DasGupta, “Effect of sulfur passivation and polyimide capping on InGaAs-InP PIN photodetectors,” IEEE Trans. Electron Devices, vol. 50, pp. 532-534, 2003.
    [45] P. H. Lai, C. W. Chen, C. I. Kao, S. I. Fu, Y. Y. Tsai, C. W. Hung, C. H. Yen, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “Influences of sulfur passivation on temperature-dependent characteristics of an AlGaAs/InGaAs/GaAs PHEMT,” IEEE Trans. Electron Devices, vol. 53, pp. 1-8, 2006.
    [46] Z. Chen, W. Kim, A. Salvador, S. N. Mohammad, O. Aktas, and H. Morkoc, “Schottky barriers on anodic-sulfide-passivated GaAs and their stability,” J. Appl. Phys., vol. 78, pp. 3920-3924, 1995.
    [47] Y. C. Chou, G. P. Li, D. Leung, Z. Y. Wang, Y. C. Chen, R. Lai, C. S. Wu, R. Kono, P. H. Liu, J. Scarpulla, and D. C. Streit, “Degradation effects induced by hot carrier and high channel temperature in pseudomorphic GaAs millimeter wave power HEMT’s,” in 19th Annual Gallium Arsenide Integrated Circuit Symposium, GaAs IC, 1997, pp. 165-168.
    [48] A. Nagayama, S. Yamauchi, and T. Hariu, “Suppression of gate leakage current in n-AlGaAs/GaAs power HEMTs,” IEEE Trans. Electron Devices, vol. 47, pp. 517-522, 2000.
    [49] C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett., vol. 84, pp. 2322-2324, 2004.
    [50] W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, and Y. H. Wu, “On the improvement of gate voltage swings in δ-doped GaAs/InxGa1-xAs/GaAs pseudomorphic heterostructures,” IEEE Trans. Electron Devices, vol. 40, pp. 1630-1635, 1993.
    [51] P. H. Lai, H. M. Chuang, S. F. Tsai, C. I. Kao, H. R. Chen, C. Y. Chen, and W. C. Liu, “Characteristics of a New Camel-Gate Field Effect Transistor (CAMFET) with a Composite Channel Structure,” Semicond. Sci. Technol., vol. 19, pp. 864-869, 2004.
    [52] W. C. Liu, W. L. Chang, W. S. Lour, K. H. Yu, K. W. Lin, C. C. Cheng, and S. Y. Cheng, “Temperature-dependence investigation of a high-performance inverted delta-doped V-shaped GaInP/InxGa1-xAs/GaAs pseudomorphic high electron mobility transistor” IEEE Trans. Electron Device., vol. 48, pp. 1290-1296, 2001.
    [53] K. H. Yu, H. M. Chuang, K. W. Lin, S. Y. Cheng, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT)” IEEE Trans. Electron Device., vol. 49, pp. 1687-1693, 2002.
    [54] M. S. Carpenter, M. R. Melloch, M. S. Lundstrom, and S. P. Tobin, “Effects of Na2S and (NH4)2S edge passivation treatments on the dark current-voltage characteristics of GaAs pn diodes,” Appl. Phys. Lett., vol. 51, pp. 2157-2159, 1988.
    [55] N. Okamoto, N. Hara, and H. Tanaka, “Surface passivation of InGaP/InGaAs /GaAs pseudomorphic HEMTs with ultrathin GaS film,” IEEE Trans. Electron Devices, vol. 47, pp. 2284-2289, 2000.
    [56] C. R. Moon, B. D. Choe, S. D. Kwon, and H. Lim, “Difference of interface trap passivation in Schottky contacts formed on (NH4)2Sx-treated GaAs and In0.5Ga0.5P,” J. Appl. Phys., vol. 81, pp. 2904-2906, 1997.
    [57] M. Sugiyama, S. Maeyama, M. Oshima, H. Oigawa, Y. Nannichi, and H. Hashizume, “Surface and interface structures of S-passivated GaAs(111) studied by soft x-ray standing waves,” Appl. Phys. Lett., vol. 60, pp. 3247-3249, 1992.
    [58] S. D. Kwon, C. H. Kim, H. K. Kwon, B. D. Choe, and H. Lim, “Interface properties of (NH4)2Sx-treated In0.5Ga0.5P Schottky contacts,” J. Appl. Phys., vol. 77, pp. 2202-2204, 1995.
    [59] W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “High performance symmetric double d-doped GaAs/InGaAs/GaAs pseudomorphic HFETs grown by MOCVD,” IEEE Trans. Electron Devices, vol. 41, pp. 456-457, 1994.
    [60] H. M. Chuang, S. Y. Cheng, X. D. Liao, C. Y. Chen, and W. C. Liu, “InGaP/InGaAs Double Delta-Doped Channel Transistor,” IEE Electron. Lett., vol. 39, pp. 1016-1018, 2003.
    [61] W. S. Lour, M. K. Tsai, K. C. Chen, Y. W. Wu, S. W. Tan, and Y. J. Yang, “Dual-gate InGaP/InGaAs pseudomorphic high electron mobility transistors with high linearity and variable gate-voltage swing,” Semicond. Sci. Technol., vol. 16, pp. 826-830, 2001.
    [62] P. G. Neudeck, M. S. Carpenter, M. R. Melloch, and J. A. Cooper, “Significant long-term reduction in n-channel MESFET subthreshold leakage using ammonium-sulfide surface treated gates,” IEEE Electron Device Lett., vol. 12, pp. 553-555, 1991.
    [63] R. B. Darling, “Current-voltage characteristics of Schottky barrier diodes with dynamic interfacial defect state occupancy,” IEEE Trans. Electron Devices, vol. 43, pp. 1153-1160, 1996.
    [64] K. Maeda, H. Ikoma, K. Sato, and T. Ishida, “Current-voltage characteristics and interface state density of GaAs Schottky barrier,” Appl. Phys. Lett., vol. 62, pp. 2560-2562, 1993.
    [65] S. Dhar, V. R. Balakrishman, V. Kumar, and S. Ghosh, “Determination of energetic distribution of interface states between gate metal and semiconductor in sub-micron devices from current-voltage characteristics,” IEEE Trans. Electron Devices, vol. 47, pp. 282-287, 2000.
    [66] J. K. Yang, H. H. Park, H. Kim, H. W. Jang, J. L. Lee, and S. Im, “Improved performance of GaAs MESFETs through sulfidation of Pt/GaAs interface,” Thin Solid Films, vol. 447-448, pp. 626-631, 2004.
    [67] S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ed. New York: Wiley, 1985, pp. 237-251.
    [68] Y. S. Lin, S. S. Lu, and Y. J. Wang, “High-performance Ga0.51In0.49P/GaAs airbridge gate MISFET's grown by gas-source MBE,” IEEE Trans. Electron Devices, vol. 44, pp. 921-929, 1997.
    [69] R. Hakimi and M. C. Amann, “Reduction of 1/f carrier noise in InGaAsP/InP heterostructures by sulphur passivation of facets,” Semicond. Sci. Technol., vol. 12, pp. 778-780, 1997.
    [70] S. S. Islam and A. F. M. Anwar, “Self-heating and trapping effects on the RF performance of GaN MESFETs,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1229-1236, 2004.
    [71] S. D. Kwon, H. K. Kwon, B. D. Choe, H. Lim, and J. Y. Lee, “Investigation of electrical properties and stability of Schottky contacts on (NH4)2Sx-treated n- and p-type In0.5Ga0.5P,” J. Appl. Phys., vol. 78, pp. 2482-2488, 1995.
    [72] H. Ohno, H. Kawanishi, Y. Akagi, Y. Nakajima, and T. Hijikata, “AES and XPS Studies of Surface of AlxGa1-xAs (110) Treated by Ammonium Sulfide,” Jpn. J. Appl. Phys., vol. 29, pp. 2473-2476, 1990.
    [73] D. J. Coleman, Jr., W. R. Wisseman, and D. W. Shaw, “Reaction rates for Pt on GaAs,” Appl. Phys. Lett., vol. 24, pp. 355-357, 1974.
    [74] O. Wada, S. Yanagisawa, and H. Takanashi, “Thermal reaction of Ti evaporated on GaAs,” Appl. Phys. Lett., vol. 29, pp. 263-265, 1976.
    [75] P. C. Chao, S. C. Palmateer, P. M. Smith, U. K. Mishra, K. H. G. Duh, and J. C. M. Hwang, “Millimeter-wave low noise high electron mobility transistors,” IEEE Electron Device Lett., vol. 6, pp. 531-533, 1985.
    [76] H. F. Chau, D. Pavlidis, J. L. Chraux, and J. Graffuil, “Studies of DC, low frequency, and microwave characteristics of uniform and step-doped GaAs/AlGaAs HEMT’s,” IEEE Trans. Electron Devices, vol. 36, pp. 2288-2297, 1989.
    [77] Y. J. Jeon, Y. H. Jeong, B. Kim, Y. G. Kim, W. P. Hong, and M. S. Lee, “DC and RF performance of LP-MOCVD grown Al0.25Ga0.75As/InxGa1-xAs (x=0.15-0.28) P-HEMT’s with Si-delta doped GaAs layer,” IEEE Electron Device Lett., vol. 16, pp. 563-565, 1995.
    [78] V. N. Bessolov, M. V. Lebedev, N. M. Binh, M. Friedrich and D. R. T. Zahn, “Sulphide passivation of GaAs: the role of the sulphur chemical activity,” Semicond. Sci. Technol., vol. 13, pp. 611-614, 1998.
    [79] J. W. Seo, T. Koker, S. Agarwala, and I. Adesida, “Etching characteristics of AlxGa1-xAs in (NH4)2Sx solutions,” Appl. Phys. Lett., vol. 60, pp. 1114-1116, 1992.
    [80] B. Wu, G. Xia, Z. Li, and J. Zhou, “Sulphur passivation of the InGaAsSb/GaSb photodiodes,” Appl. Phys. Lett., vol. 80, pp. 1303-1305, 2002.
    [81] K. Remashan and K. N. Bhat, “Stable gallium arsenide MIS capacitors and MIS field effect transistors by (NH4)2Sx treatment and hydrogenation using plasma deposited silicon nitride gate insulator,” IEEE Trans. Electron Devices, vol. 49, pp. 343-353, 2002.
    [82] A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal-semiconductor systems,” J. Appl. Phys., vol. 36, pp. 3212-3220, 1965.
    [83] J. F. Fan, H. Oigawa, and Y. Nannichi, “Metal-dependent Schottky barrier height with the (NH4)2Sx-treated GaAs,” Jpn. J. Appl. Phys., vol. 27, pp. L2125-L2127, 1988.
    [84] T. Ytterdal, B. J. Moon, T. A. Fjeldly, and M. S. Shur, “Enhanced GaAs MESFET CAD model for a wide range of temperature,” IEEE Trans. Electron Devices, vol. 42, pp. 1724-1734, 1995.
    [85] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1990, pp. 341.
    [86] E. J. Meijer, G. H. Gelinck, E. van Veenendaal, B. H. Huisman, D. M. de Leeuw, and T. M. Klapwijk, “Scaling behavior and parasitic series resistance in disordered organic field-effect transistors,” Appl. Phys. Lett., vol. 82, pp. 4576-4578, 2003.
    [87] P. H. Lai, S. I. Fu, Y. Y. Tsai, C. W. Hung, C. H. Yen, H. M. Chuang, and W. C. Liu, “Improved temperature-dependent characteristics of a sulfur-passivated AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor,” J. Electrochem. Soc., vol. 153, pp. G632-G635, 2006.
    [88] J. L. Wright, M. W. Marks, and K. D. Decker, “Modeling of MMIC Device for Determining MMIC Channel Temperature During Life Test,” in 7th Annual Semiconductor Thermal Measurement and Management Symposium, SEMI-THERM VII, 1991, pp. 110-116.
    [89] K. E. Bohlin, “Generalized Norde plot including determination of the ideality factor,” J. Appl. Phys., vol. 60, pp. 1223-1224, 1986.
    [90] H. L. Chuang, M. S. Carpenter, M. R. Melloch, M. S. Lundstrom, E. Yablonovitch, and T. J. Gmitter, “Surface passivation effects of As2S3 glass on self-aligned AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 57, pp. 2113-2115, 1990.
    [91] K. W. Lee, N. Y. Yang, M. P. Houng, Y. H. Wang, and P. W. Sze, “Improved breakdown voltage and impact ionization in InAlAs/InGaAs metamorphic high-electron-mobility transistor with a liquid phase oxidized InGaAs gate,” Appl. Phys. Lett., vol. 87, pp. 263501-1-263501-3, 2005.
    [92] J. S. Su, W. C. Hsu, D. T. Lin, W. Lin, H. P. Shaio, Y. S. Lin, J. Z. Huang, and P. J. Chou, “High-breakdown voltage Al0.66In0.34As0.85Sb0.15/In0.75Ga0.25As/InP heterostructure field-effect transistors,” IEE Electron. Lett., vol. 32, pp. 2095-2097, 1996.
    [93] Y. S. Lin and J. H. Huang, “Mobility Enhancement and Breakdown Behavior in InP-Based Heterostructure Field-effect Transistor,” J. Electrochem. Soc., vol. 152, pp. G627-G629, 2005.
    [94] C. W. Chen, P. H. Lai, W. S. Lour, D. F. Guo, J. H. Tsai, and W. C. Liu, “Temperature dependences of an In0.46Ga0.54As/In0.42Al0.58As based metamorphic high electron mobility transistor (MHEMT),” Semicond. Sci. Technol., vol. 21, pp. 1358-1363, 2006.
    [95] R. T. Webster, W. Shangli, and A. F. M. Anwar, “Impact ionization in InAlAs/InGaAs/InAlAs HEMT’s,” IEEE Electron Device Lett., vol. 21, pp. 193-195, 2000.
    [96] W. S. Lour and C. Y. Lia, “Comparisons between mesa- and airbridge-gate AlGaAs/InGaAs doped-channel field-effect transistors,” Semicond. Sci. Technol., vol. 13, pp. 796-800, 1998.
    [97] J. H. Werner and H. H. Güttler, “Barrier inhomogeneities at Schottky contacts,” J. Appl. Phys., vol. 69, pp. 1522-1533, 1991.
    [98] S. W. Kim, K. M. Lee, J. H. Lee, and K. S. Seo, “High-performance 0.1mm In0.4AlAs/In0.35/GaAs MHEMTs with Ar plasma treatment,” IEEE Electron Device Lett., vol. 26, pp. 787-789, 2005.
    [99] D. H. Huang, W. C. Hsu, Y. S. Lin, J. C. Huang, and C. L. Wu, “Strain-relaxed In0.1Al0.25Ga0.65As/In0.22Ga0.78As/In0.1Al0.25Ga0.65As HEMT,” J. Electrochem. Soc., vol. 153, pp. G826-G829, 2006.
    [100] G. A. Baraff, “Distribution functions and ionization rates for hot electrons in semiconductors,” Phys. Rev., vol. 128, pp. 2507-2517, 1962.

    下載圖示 校內:立即公開
    校外:2007-07-14公開
    QR CODE