簡易檢索 / 詳目顯示

研究生: 方盈倩
Fang, Ying-Chien
論文名稱: UV-白光 LED用硫化鋅系列奈米螢光粉體之合成及其特性探討
Preparation and Characterization of Zinc-based nanophosphors for UV-white light LEDs
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 74
中文關鍵詞: 硫化鋅螢光粉白光
外文關鍵詞: phosphor, LED, Zinc-based
相關次數: 點閱:61下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    硫化鋅(ZnS)具有寬能隙(為3.68 eV)的特性,為Ⅱ-Ⅵ族化合物半導體成員之一,早期應用在薄膜電激發光元件上。以其優異的發光特性,可發出可見光,故亦適合作為螢光材料。而螢光材料主要的用途是應用在照明光源、顯示器元件與光輻射偵測器等方面。本論文利用固態及化學共沉合成方法來製備奈米級硫化鋅螢光粉體並分別摻雜錳、銅、銪及鎂等螢光粉,同時利用X光繞射、穿透式電子顯微鏡、光激發光光譜、色度座標的量測結果來探討不同摻雜元素之奈米螢光粉體硫化物的特性,以期可用於白光LED。

    在第一部份,我們利用固態法製備不同硫鋅比之硫化鋅並摻雜0.5mol%錳離子。藉由硫含量比率減少,使母體硫化鋅在450nm之藍光放射峰強度增強,搭配著摻雜錳離子所造成在588nm之橘黃光放射峰混成白光。本實驗用固態法,在硫鋅比為0.65,反應溫度分別為200℃與300℃條件下;以及在硫鋅比為0.75,反應溫度為100℃條件下,成功的備製一近似白光的硫化鋅摻雜0.5mol%的錳離子。

    在第二部份,我們利用化學共沉法製備硫化鋅摻雜單一元素之螢光粉體(ZnS:Mn+2,ZnS:Cu+2,ZnS:Eu+3),探討其發光特性。由實驗結果發現錳離子所造成放射峰位置約在橘光593nm處;銅離子摻雜少量時,其造成放射峰位置約在藍光470nm,當銅離子掺雜增加時,在綠光520nm放射峰強度隨之明顯。在另一方面,當銪離子摻雜於硫化鋅主體內其發光特性表現主要為紅光。未來可藉由共摻雜銅、銪離子,或銅、錳離子有機會得到白光螢光粉。

    在第三部份,我們利用化學共沉法在室溫下所合成摻雜不同比例之鎂離子之硫化鋅摻雜2mol%錳離子放射光譜,放射峰位置約在597nm處為錳離子所造成的特性發光。其中當鎂含量為49%時為近似白光螢光粉體,其CIE值為(0.322,0.292)。

    Abstract

    Zinc sulfide (ZnS), as II-VI semiconductors with a wide band gap energy of 3.68eV, have received much attention due to their excellent luminescence properties and are commercially used in electroluminescence devices. They are candidate materials for phosphors that emit visible light. The major and important applications of phosphors are used as light sources, display devices, radiation detectors and so on. In this study, we prepare the nano-scaled ZnS based phosphors using solid state method and chemical precipitation method. Different dopants (Mn, Cu, Mg, Eu) have been introduced in the system. X-ray diffraction pattern, SEM, TEM, PL and CIE measurements have been used to investigate the characteristics of ZnS-based nano-phosphors for UV-white light LED applications.


    Firstly , we synthesize and characterize the luminescence properties of ZnS:Mn nanophosphors by solid state method with different S/Zn ratio and under different temperature. When S/Zn ratio is 0.65 and under 300℃, a near white light phosphors are obtained and C.I.E. is (0.309,0.311).

    Secondly, ZnS:Mn+2,ZnS:Cu+2 and ZnS:Eu+3 phosphors are prepared by chemical-precipitation method. From the emission spectra data, orange light with the emission peak at 593nm for ZnS:Mn+2 phosphors are detected, blue light at 470nm and green light at 520nm for ZnS:Cu+2 phosphors are detected, red light for ZnS:Eu+3 phosphors are also detected. It is possible to obtain white light phosphors by co-doping Cu+2,Eu+3 and Cu+2,Mn+2 in this system

    Thirdly, ZnS co-doped Mg+2 and Mn+2 phosphors are synthesized by chemical precipitation method. From the emission spectra data, near white light is observed for Zn0.49Mg0.49S: Mn+2 (2mol%) and C.I.E is(0.322,0.292).

    目錄 中文摘要 I 英文摘要 III 目錄 V 表目錄 VIII 圖目錄 IX 第一章 導論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 相關研究 3 第二章 理論基礎 4 2-1 Ⅱ-Ⅵ族化合物半導體材料之簡介 4 2-2 硫化鋅螢光粉之簡介 5 2-2-1 發展歷史 5 2-2-2 硫化鋅性質與應用 5 2-2-3 硫化鋅晶體結構之介紹 6 2-3 螢光材料簡介 6 2-4 發光機制簡介 7 2-5 螢光粉體發光原理 8 2-5-1 螢光體能量的激發與吸收 8 2-5-2 螢光放射和非輻射轉移 9 2-6 發光中心之種類與原理 10 2-7 螢光體發光特性之量測 12 2-7-1 亮度量測 12 2-7-2 放射光譜量測 12 2-7-3 色度座標 12 2-8 奈米螢光粉簡介 14 第三章 實驗參數與研究方法 15 3-1 實驗藥品 15 3-2 實驗步驟 15 3-2-1 固態反應法 15 3-2-2 化學共沉法 16 3-3 量測系統及特性分析 16 3-3-1 量測儀器設備 16 3-3-2 特性分析 17 3-3-2-1 結構分析 17 3-3-2-2 光學性質分析 19 3-3-2-3 SEM表面分析 20 第四章 結果與討論 21 4-1 奈米硫化鋅系螢光粉合成之研究 21 4-2 固態法合成奈米級ZnS:Mn+2螢光粉 21 4-2-1 不同S/Zn比例ZnS:Mn+2螢光粉之XRD分析 21 4-2-2 不同S/Zn比例ZnS:Mn+2之光激發光譜(Photoluminescence; PL) 結果 22 4-3 化學共沉法合成奈米級硫化鋅系螢光粉 23 4-3-1 ZnS:Mn+2奈米螢光粉體之合成 23 4-3-1-1 ZnS:Mn+2奈米螢光粉體之XRD分析 23 4-3-1-2 不同Mn+2摻雜量之ZnS:Mn+2奈米螢光粉體發光特性 24 4-3-1-3 TEM影像分析 25 4-3-2 ZnS:Cu+2奈米螢光粉體之合成 25 4-3-2-1 ZnS:Cu+2奈米螢光粉體之XRD分析 25 4-3-2-2 不同Cu+2摻雜量之ZnS:Cu+2奈米螢光粉體發光特性 25 4-3-3 ZnS:Eu+3奈米螢光粉體之合成 26 4-3-3-1 ZnS:Eu+3奈米螢光粉體之XRD分析 26 4-3-3-2 不同Eu+3摻雜量之ZnS:Eu+3奈米螢光粉體發光特性 26 4-3-4 Zn0.98-xMgxS:2mol%Mn+2奈米螢光粉體之合成 27 4-3-4-1 Zn0.98-xMgxS:2mol%Mn+2奈米螢光粉體之XRD分析 27 4-3-4-2不同Mg+2含量之Zn0.98-xMgxS:2mol%Mn+2奈米螢光粉體發光特性 27 4-3-5掃描式電子顯微鏡(SEM)之表面型態觀察 28 第五章 結論與未來展望 29 5-1 結論 29 5-1-1固態法 29 5-1-2化學共沉法 29 5-2未來展望 31 參考文獻 70 表目錄 Table 1-1 The prepared methods of nano-material 32 Table 2-1 Energy bandgap of Ⅱ-Ⅵ group materials 33 Table 2-2 Energy bandgap of II-VI semiconductors 33 Table 2-3 ZnS phosphors application 33 Table 2-4 The application of Phosphor Devices 34 Table 4-1 The particle size (nm) of ZnS: 0.5mol%Mn+2 phosphor prepared by solid state with different S/Zn ratio and temperature 35 Table 4-2 The particle size (nm) of ZnS dopped different elements phosphor prepared by chemical precipitation 35 圖目錄 Fig. 2-1(a) Cubic (sphalerite) and (b) hexagonal (wurtzite) modifications of zinc sulfide 36 Fig. 2-2 The equilibrium phase diagram of ZnS 37 Fig. 2-3 ConFig.urational coordinate diagram. The ground state (g) has the equilibrium distance R0. The excited state (e) has the equilibrium distance R0’. The parabola offset is △R(=R0’ -R0) 38 Fig. 2-4 The diagram of Stokes shift 39 Fig. 2-5 The influence of coupling on emission spectra 39 Fig. 2-6 Nonradiative transitions in the conFig.urational coordinate diagram: (a) strong coupling; (b) weak coupling; (c) combination of both 40 Fig. 2-7 Munsell coordinate diagram 41 Fig. 2-8 Tristimulous Response of the Human Eye 41 Fig. 2-9 CIE Chromaticity coordinate diagram 42 Fig. 3-1 The flow chart of solid state method 43 Fig. 3-2 The flow chart of chemical precipitation method 44 Fig. 3-3 The installation of measured phosphors excitation spectra 45 Fig. 3-4 The installation of measured phosphors emission spectra 46 Fig. 4-1 The XRD patterns of ZnS: 0.5mol%Mn+2(S/Zn=1) phosphor prepared by solid state method with different temperature (a)100℃ (b)200℃ (c)300℃ 47 Fig. 4-2 The XRD patterns of ZnS: 0.5mol%Mn+2(S/Zn=0.85) phosphor prepared by solid state method with different temperature (a)100℃ (b)200℃ (c)300℃ 47 Fig. 4-3 The XRD patterns of ZnS: 0.5mol%Mn+2(S/Zn=0.75) phosphor prepared by solid state method with different temperature (a)100℃ (b)200℃ (c)300℃ 48 Fig. 4-4 The XRD patterns of ZnS: 0.5mol%Mn+2(S/Zn=0.65) phosphor prepared by solid state method with different temperature (a)100℃ (b)200℃ (c)300℃ 48 Fig. 4-5 The XRD patterns of ZnS: 0.5mol%Mn+2(S/Zn=0. 5) phosphor prepared by solid state method with different temperature (a)100℃ (b)200℃ (c)300℃ 49 Fig. 4-6 The particle size of ZnS: 0.5mol%Mn+2 phosphor prepared by solid state method with different S/Zn ratio (a)S/Zn=1 (b)S/Zn=0.85 (c)S/Zn=0.75 (d)S/Zn=0.65 (e)S/Zn=0.5 50 Fig. 4-7 The emission spectra of ZnS: 0.5mol%Mn+2 (S/Zn=1) phosphor prepared by solid state method with with different temperature 51 Fig. 4-8 The emission spectra of ZnS: 0.5mol%Mn+2 (S/Zn=0.85) phosphor prepared by solid state method with with different temperature 51 Fig. 4-9 The emission spectra of ZnS: 0.5mol%Mn+2 (S/Zn=0.75) phosphor prepared by solid state method with with different temperature 52 Fig. 4-10 The emission spectra of ZnS: 0.5mol%Mn+2 (S/Zn=0.65) phosphor prepared by solid state method with with different temperature 52 Fig. 4-11 The emission spectra of ZnS: 0.5mol%Mn+2 (S/Zn=0.5) phosphor prepared by solid state method with with different temperature 53 Fig. 4-12 The integration intensity of ZnS: 0.5mol%Mn+2 phosphor prepared by solid state method with with different S/Zn ratio 53 Fig. 4-13 The CIE diagrams of ZnS doped 0.5mol % Mn2+ (S/Zn=0.65 and 0.75)nanoparticles prepared by solid state method and synthesized at 300℃ 54 Fig. 4-14 The XRD patterns of ZnS based phosphors doped with various Mn concentration prepared by chemical precipitation method(a)1 mol% (b)2 mol% (c)3 mol% (d)4 mol% (e)5 mol% (f)6 mol% 55 Fig. 4-15 The emission spectra of ZnS based phosphors doped with various Mn concentration prepared by chemical precipitation method (a)1 mol% (b)2 mol% (c)3 mol% (d)4 mol% (e)5 mol% (f)6 mol% 56 Fig. 4-16 The integration intensity of ZnS based phosphors doped with various Mn concentration prepared by chemical precipitation method 57 Fig. 4-17 (a)TEM image of ZnS: 2mol%Mn+2 phosphor prepared by chemical precipitation method and (b) electron diffraction pattern of ZnS:2mol%Mn+2 phosphor prepared by chemical precipitation method 58 Fig. 4-18 The XRD patterns of ZnS based phosphors doped with various Cu concentration prepared by chemical precipitation method(a)1 mol% (b)2 mol% (c)3 mol% (d)4 mol% (e)5 mol%(f)6 mol%. 59 Fig. 4-19 The emission spectra of ZnS based phosphors doped with various Cu concentration prepared by chemical precipitation method(a)1 mol% (b)2 mol% (c)3 mol% (d)4 mol% (e)5 mol% (f)6 mol% 59 Fig. 4-20 The integration intensity of ZnS based phosphors doped with various Cu concentration prepared by chemical precipitation method 60 Fig. 4-21 The XRD patterns of ZnS based phosphors doped with various Eu concentration prepared by chemical precipitation method(a)1 mol% (b)2 mol% (c)3 mol% (d)4 mol% (e)5 mol% (f)6 mol% 60 Fig. 4-22 The emission spectra(excited at 383nm) of ZnS based phosphors doped with various Eu concentration prepared by chemical precipitation method(a)1 mol% (b)2 mol% (c)3 mol% (d)4 mol% (e)5 mol% (f)6 mol% 61 Fig. 4-23 The integration intensity of ZnS based phosphors doped with various Eu concentration prepared by chemical precipitation method 62 Fig. 4-24 The XRD patterns of Zn0.98-xMgxS:2mol%Mn+2 phosphors prepared by chemical precipitation method(a) x= 0.12 (b) x= 0.24(c) x=0.36 (d ) x=0.49 (e) x=0.74 (f) x=0.86 62 Fig. 4-25 The emission spectra of Zn0.98-xMgxS:2mol%Mn+2 phosphors prepared by chemical precipitation method 63 Fig. 4-26 The integration intensity of Zn0.98-xMgxS:2mol%Mn+2 phosphors prepared by chemical precipitation method 64 Fig. 4-27 The CIE diagrams of Zn0.98-xMgxS:2mol%Mn+2 (X=0.49) phosphors prepared by chemical precipitation method 65 Fig. 4-28 SEM image of ZnS:Mn+2 phosphors prepared by chemical precipitation method 66 Fig. 4-29 SEM image of ZnS:Cu+2 phosphors prepared by chemical precipitation method 67 Fig. 4-30 SEM image of ZnS:Eu+3 phosphors prepared by chemical precipitation method 68 Fig. 4-31 SEM image of Zn0.98-xMgxS:2mol%Mn+2 phosphors prepared by chemical precipitation method 69

    參考文獻
    [1] S. M. Sze, Microelectronics Technology: Challenges in the 21st Century, New Jersey (2002).
    [2] S.T. Lee, N. Wang, C.S. Lee, Mater. Sci. Eng. A, 286, 16 (2000).
    [3] C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am.Chem. Soc. 115, 8706 (1993).
    [4] Z.A. Peng, X. Peng, J. Am. Chem. Soc. 123, 1389 (2001).
    [5] S.K. Haram, B.M. Quinn, A.J. Bard, J. Am. Chem.Soc. 123, 8860 (2001).
    [6] J.F. Suyver, S.F. Wuister, J.J. Kelly and A. Meijerink, Nano Lett. 1(4), 429 (2001).
    [7] S. Wageh, Zhao Su Ling and Xu Xu-Rong, Journal of Crystal Growth 255, 332 (2003).
    [8] Heesun Yang and Paul H. Hollway, Journal of Applied Physics 93 (1), 586 (2003) .
    [9] F.H. Su, B.S. Ma, Z.L. Fang, K. Ding, G.H. Li and W. Chen, J. Phys: Condens. Matter 14, 12657 (2002).
    [10] S. Wageh, Liu Shu-Man, Fang Tian You and Xu Xu-Rong, Journal of Luminescence 102-103, 768 (2003).
    [11] Masanori Tanaka, Journal of Luminescence 100, 163 (2002).
    [12] R. N. Bhargave, D. Gallagher, X. Hong and A. Nurmikko, Physical Review Letters 72 (3), (1994).
    [13] Ageeth A. Bol, Joke Ferwerda, Jaap A.Bergwerff and Andries Meijerink, Journal of Luminescence 99, 325 (2002).
    [14] Ping Yang, Mengkai Lu, Dong Xu, Duolong Yuan and Guangjun Zhou, Journal of Luminescence 93, 101 (2001).
    [15] Y. Nakaoka, Y. Nosaka, Langmuir 13, 708 (1997).
    [16] T. Vossmeyer, L. Katsikas, M. Giersig, I.G. Popovic, K.Diesner, A. Chemseddine, A. Eychmuller, H. Weller, J. Phys. Chem. 98, 7665 (1994).
    [17] Chunming Jin, Jiaqi Yu, Lingdong Sun, Kai Dou, Shanggong Hou, Jialong Zhao and Yimin Chen, Journal of Luminescence 66&67, 315 (1996).
    [18] Wei Chen, Ramaswami Sammynaiken and Yining Huang, Journal of Applied Phys. 89 (2), 1120 (2001).
    [19] L.P. Wang and G.Y. Hong, Materials Research Bulletin 35, 695 (2000).
    [20] N.I. Kovtyukhova, E.V. Buzaneva, C.C. Waraksa, T.E. Mallouk, Materials Science and Engineering B69-70, 411 (2000).
    [21] Robert Vacassy, Stefan M. Scholz, Joydeep Dutta, Christopher John George Plummer, Raymond Houriet and Heinrich Hofmann, J. Am. Ceram. Soc. 81 (10), 2669 (1998).
    [22] B. Bhattacharjee, D. Ganguli, S. Chaudhuri, A.K. Pal, Thin Solid Films 422, 98 (2002).
    [23] Wenbin Sang, Yongbiao Qian, Jiahua Min, Dongmei Li, Lingling Wang, Weimin Shi, Liu Yinfeng, Solid State Communications 121, 475 (2002).
    [24] J. C. Sanchez-Lopez, A. Justo and A. Fernandez, Langmuir 15, 7822 (1997).
    [25] 廖世傑,工業材料 161, 159 (2000)。
    [26] X. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos,
    J. Am. Chem. Soc. 119, 7019 (1997).
    [27] A. R. Kortan, R. Hull, R. L. Opila, M.G. Bawendi, M. L. Steigerwald,
    P. J.Carroll and L. E. Brus, J. Am. Chem. Soc. 112, 1327 (1990).
    [28] Heesun Yang and Paul. H. Holloway, Applied Physics Letters, 82 (12), 1965 (2003).
    [29] Lixin Cao, Jiahua Zhang, Shanling Ren and Shihua Huang, Applied Physic Letters, 80(23), 4300 (2002).
    [30] 蘇勉增、吳世康,“發光材料”,第四卷,1~39頁。
    [31] Wenxiu Que, Y. Zhou, Y. L. Lam, Y. C. Chan, and C. H. Kam, Applied Physics Letters 73(19), 2727 (1998).
    [32] B. Henderson and G.F. Imbuschr, “Optical Spectroscopy of Inorganic Solids”,Clarendon Press. Oxford, (1989).
    [33] S.M.Sze, “Physics of Semiconductor Devices”, Second Edition, John Wiley & Sons, (1981).
    [34] G. Blasse and B.C Grabmaier, “Luminescent Materials”, Springer
    Verlag, Berlin Heidelberg, Germany(1994).
    [35] Shigeo Shionoya, “PHOSPHOR HANDBOOK”, CRC Press LLC,
    New York, U.S.A(1999).
    [36] D. R. Vij and N. singh, “Luminescent and Related Properties of II-VI
    semiconductors”, Nova Science Publishers(1998).
    [37] 唐自標,“硫化鋅系螢光材料的製備與其發光特性之研究”,私立
    大同工學院材料工程研究所博士論文,民國87 年。
    [38] Leverenz, h.W., “An Introduction to Luminescence of Solids”,John
    Wiley & Sons, New York,(1950).
    [39] Kroger, F.A. and Hellingman, J.E., Trans. Electrochem. Soc., 95, 68
    (1949).
    [40] Kroger, F.A. and Hellingman, J.E., and Smit, N.W., Physca, 15, 990,
    (1949).
    [41] Kroger, F.A. and Dikhoff, J.A.M., Physca, 16, 297, (1950).
    [42] Klasens, H.A. J. Electrochem. Soc., 100, 72, (1953).
    [43] Prener, J.S. and Williams, F.E., J. Electrochem. Soc., 103, 342,(1956).
    [44] Hua Yang, zichen Wang, Lizhu Song, Muyu Zhao, Yimin Chen, Kai Dou, Jiaqi Yu, Li Wang, Materials Chemistry and Physics 47, 249 (1997).
    [45] L.M. Gan, B. Liu, S. J. Chua, G. L. Loy, and G. Q. Xu, Langmuir 13, 6427 (1997).
    [46] M. Ihara, T. Igarashi, T. Kusunoki, K. Ohno, J. Electrochem. Soc., 147(6), 2355 (2000).
    [47] Yadong Li, Yi Ding, Yue Zhang, Yitai Qian, J. Physics and Chemistry of Solids 60, 13 (1999).
    [48] Kelly Sooklal, Brian S. Cullum, s. Michael Angel, and Catherine J. Murphy, J. Phys. Chem. 100, 4551 (1996).
    [49] 林麗玉,“柰米硫化鋅與硫化鋅鎘螢光體微粒之製備、特性鑑定與發光特性研究”,國立交通大學應用化學研究所碩士論文, 2000.
    [50] A.H. Kitai, “Solid State Luminescence”, CHAPMAN&HALL,London, U.K.(1993).
    [51] Romesh C. Sharma and Y. Austin Chang , “Thermodynamic analysis and phase equilibria calculations for the Zn-Te, Zn-Se and Zn-S systems’’, J. Crystal Growth 88 , 193-204 (1988).
    [52] P. Goldberg, “Luminescence of Inorganic Solids”, Acadamic Press Inc., New York,(1966).
    [53] 陳昱霖,“石榴石(Y3Al5O12)螢光體之合成與性質研究”,國立成功大學材料科學及工程學系碩士論文,民國90年。
    [54] 陳怡冰,“鹼土硫化物螢光粉之新穎合成與發光特性之研究”,國立交通大學應用化學系碩士論文,民國90年。
    [55] K S.Suslick, “Sonochemistry”, Science 23, 1439-1445(1990).
    [56] G.Blassr and B.C.Grabmaier, “Luminescence Material”, 19, Springer,
    Berlin.
    [57] 楊俊英著, “ 電子產業用螢光材料之調查”,p.7,工研院,1992。
    [58] The COLOR GOUIDE and Glossary,http//www.x-rite.com.
    [59] R. C. Ropp, “Luminescence and the solid state”, Elsevier Science Publishers, B. V., The Netherlands(1991).
    [60] F. J. Avella, “The Cathodoluminescence of Terbium Activated
    Indium Orthoborate”J. Electrochem. Soc. 113, 1225(1966).
    [61] R. Jagannathan, S.P. Manoharan, R. P. Rao, R. L. Narayanan and N.
    Rajaram, “Colour Coordinates of Some Photoluminescent Materials”
    Bull. Electrochem. 4, 597(1988).
    [62] 蘇勉曾、吳世康,“發光材料”,發光材料,第四卷,1~39頁。
    [63] 徐春祥,黃磊,陸祖宏,發光學報,20,239 (2000)。
    [64] Jun Zhang, Fuhai Su, Wei Chen, Ramaswami Sammynaiken, Sarah L. Westcott, David E. McCready, Guohua Li, and Alan G. Joly, Journal of Nanoscience and Nanotechnology, Vol. 5, 1465, (2005).

    下載圖示 校內:2012-07-04公開
    校外:2016-07-04公開
    QR CODE