簡易檢索 / 詳目顯示

研究生: 黃郁棻
Huang, Yu-Fen
論文名稱: 複合材料補強預力混凝土板之研究
Strengthening of prestressed concrete slabs with FRP composite laminates
指導教授: 胡宣德
Hu, Hsuan-teh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 114
中文關鍵詞: 預力混凝土複合材料
外文關鍵詞: prestressed concrete, composite
相關次數: 點閱:69下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用FRP補強結構物是施工的趨勢,因此有必要提出一套合理及高可信度的有效分析方法,提供工程實務界的評估使用。此分析方法,必須考慮到材料非線性行為,並利用現有的實驗研究成果來驗證分析模式。

    本文結構物是採用FRP補強預力鋼筋混凝土,對不同材料的模型,提出合理的非線性分析模式,利用有限元素軟體ABAQUS來分析,並與實體試驗資料驗證,所得之分析結果,可供日後之數值分析參考。參數部分的分析,主要以預力混凝土板為主,討論空心板與實心板補強後,板之極限強度的變化。

    The current trend in construction is to use FRP as reinforcement in concrete structures. Therefore, a reliable and effective analysis method is needed to offer for practical engineering applications. This method must take into account nonlinear behavior of materials and consist with the existing experimental research results.

    This paper shows a reasonable nonlinear model of different material to simulate of FRP reinforcement in the prestressed concrete structure with the commercial FEM software, ABAQUS, and compare with the experimental data for verification. It can be served as a reference for future numerical analyses. The prestressed concrete slabs are focused in the parametric analysis. It discusses the change of ultimate strength after FRP reinforcement in the reinforced solid and voided slabs.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VIII 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究方法 2 1.4 本文研究之內容簡述如下: 3 第二章 鋼筋混凝土的材料行為 5 2.1 混凝土的材料特性 5 2.1.1混凝土單軸行為 5 2.1.2 混凝土雙軸行為 10 2.2 預力鋼鍵的材料特性 12 第三章 混凝土材料組合律及降服準則 15 3.1 應力不變量 15 3.1.1主應力 15 3.1.2 偏差應力張量與其不變量 17 3.2 降伏判斷準則 19 3.2.1 崔司卡降伏準則(The Tresca Yield Criterion) 20 3.2.2 孟米瑟斯降伏準則 (the von Mises Yield Criterion) 20 3.2.3 莫耳-庫倫降伏準則 (the Mohr-Coulomb criterion) 21 3.3 ABAQUS對混凝土材料行為之模擬 23 3.3.1 開裂簡介及模式說明 24 3.3.2 混凝土的彈-塑性模式 26 3.3.2.1 應變率 26 3.3.2.2 壓 力 降 伏 26 3.3.2.3 材料應變硬化 28 3.3.2.4 塑 性 流 28 3.3.3 開裂檢測與彈性損壞 30 3.3.3.1 張力加勁(tension stiffening) 30 3.3.3.2 剪力保留(shear retention) 34 3.3.3.3 應變率 35 3.3.3.4 降伏 36 3.3.3.5 塑性流 37 3.3.3.6 材料硬化 37 第四章 複合材料之分析模式 39 4.1 正向性單層板的線性應力-應變關係 40 4.2 正向性單層板的非線性分析模式 43 4.3 破壞準則 44 4.3.1 Tsai-Wu破壞準則 46 4.4 單層板應力應變在任意座標軸上的轉換關係 48 4.5 合力與合力矩的關係 49 第五章 分析模式之驗證 51 5.1 PC實心板補強的分析模式驗證 51 5.1.1 PC實心板尺寸與材料參數 51 5.1.2 分析模式的建立 53 5.1.3 分析結果與實驗比較 55 5.1.3.1 預力混凝土實心板 55 5.1.3.2 CFRP補強預力混凝土實心板 58 5.2 PC空心板補強的分析模型驗證 64 5.2.1 PC空心板尺寸與材料參數 64 5.2.2 分析模式的建立 66 5.2.3分析結果與實驗之比較 67 5.3 結論 71 5.4 建議 73 參考文獻 75 附錄(Appendix) 84 附錄A 補強PC板之複合材料 FORTRAN 副程式 85 附錄B ABAQUS 輸入檔模擬 Shahawy 實心板實驗 89 附錄C ABAQUS 輸入檔模擬 Shahawy 實心板補強實驗 92 附錄D ABAQUS 輸入檔模擬 Shahawy 空心板補強實驗 95

    ACI Committee 318, Building Code Requirements for Reinforced Concrete (ACI committee, 2002), American Concrete Institute, Detroit, Michigan, 2002.
    ACI-ASCE Committee 423, “Tentative Recommendations for Prestressed Concrete,” J. ACI, Vol. 20, No. 7, pp. 548-578, Januray 1958.
    ASCE Task Committee on Concrete and Masonry Structure, State of the Art Report on Finite Element Analysis of Reinforced Concrete, ASCE, New York, 1982.
    Al-Sulaimani, G. J., Sharif, A., Basunbul, I. A., Baluch, M. H., and Ghaleb, B. N., “Strengthening of Initially Loaded Reiforced Concrete Beans Using FRP Plates,”ACI Structural journal, Vol. 91, No. 2, pp. 160-168, 1994.
    Al-Sulaimani, G. J., Sharif, A., Basunbul, I. A., Baluch, M. H., and Ghaleb, B. N., “Shear Repair for Reinforced Concrete by Fiberglass Plate Bonding,”ACI Structural journal, Vol. 91, No. 3, pp. 458-464, 1994.
    Alagusundaramoorthy, P., Harik, I. E., and Basunbul, I. A., “Flexural Behavior of R/C Beams Strengthened with Carbon Fiber Reinforced Polymer Sheets or Fabric,” Journal of Composite for Construction, Vol. 7, No. 4, pp. 292-301, 2003.
    Arduini, M., Nanni, A. and Romagnolo, M., “Performance of One-Way Reinforced Concrete Slabs with Externally Bonded Fiber Reinforced Polymer Strengthening ,” ACI Structural journal, Vol. 101, No. 2, pp. 193-201, 2004.
    Almsallam, T. H., “Analytical Prediction of Fleural Behavior of Concrete Beams Reinforced by FRP Bars,” Journal of Composite Materials, Vol. 31, No. 7, pp. 640-657, 1997.
    Ballinger, C. A., “Development of composites for civil engineering,” In Proc. ASCE Specialty Confrence on Advanced Composites Materials in Civil Engineering Structures, ASCE, New York, NY, pp.288-301., 1991.
    Ceroni,F., Pecce,M. and Matthys, S., “Tension stiffening Reinforced Concrete Ties Strengthened with Externally Bonded Fiber-Reinforced Polymer Sheets,” Journal of Composite for Construction, Vol. 8, No. 1, pp. 22-32, 2004.
    Chaallal, O., Shahawy, M. and Hassan, M., “Performance of Axially Loaded Short Rectangular Columns Strengthened with Carbon Fiber Reinforced Polymer Wrapping,” Journal of Composite for Construction, Vol. 7, No. 3, pp. 220-208, 2003.
    Chen, W. F., Plasticity in Reinforced Concrtet, McGraw-Hill, New York, 1982.
    Ebead, U. and Marzouk, H., “Fiber-Reinforced Polymer Strengthening of Two-Way Slabs,” ACI Structural Journal, Vol. 101, No. 5, pp. 650-659, 2004.
    Elias, Hani E. and Durrani, A. J., “Confinement of Prestressed Concrete Columns,” PCI Journal, pp. 122-139, 1988
    Hahn, H. T., and Tasi, S. W., “Nonlinear elastic behavior of unidirectional composite laminae,” Journal of Composite Materials, Vol. 7, pp.102-118, 1973.
    Harmon, T. G., Kim, Y. J., Kardos, J., Johnson, T. and Start, A., “Bond of Surface-Mounted Fiber-Reinforced Polymer Reinforcement for Concrete Structures,” ACI Structural journal, Vol. 100, No. 5, pp.557-564, 2003.
    Hibbitt, Karlsson, and Sorensen, Inc. ABAQUS Theory Manual, User Manual and Example Manual, Version 6.7, Providence, RI, 2007.
    Hilleborg, Modeer, A., M. and Petersson, P. E., “Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Element,” Cement and Concrete Research, Vol. 6, pp. 773-782., 1976.
    Hu, H.-T. and Schnobrich, W. C., “Constitutive Modelling of Concrete by Using Nonassociated Plasticity,” Journal of Materials in Civil Engineering, Vol. 1, No. 4, pp. 199-216., 1989.
    Hu, H.-T. and Schnobrich, W. C., “Nonlinear Analysis of Cracked Reinforced Concrete,” ACI Structural Journal, Vol. 87, No. 2, pp. 199-207., 1990.
    Hu, H.-T., Huang, C.-S., Wu, M.-H. and Wu, Y.-M., “Nonlinear Analysis of Axially Loaded CFT Columns with Confinement Effect,” Journal of Structural Engineering, Vol. 129, No. 10, pp. 1322-1329, 2003.
    Jones,R. M. and Morgan, M. S., “Analysis of nonlinear stress-strain behavior of fiber-reinforced composite materials,” AIAA Journal, Vol. 15, pp. 1669-1676, 1997.
    Kupfer, H., Hilsdorf, H. K. and Rush, H.,“Behavior of concrete under biaxial stresses,” ACI Journal, Vol. 66, pp. 656-666, 1969.
    Lam, L. and Teng, J. G.,“Strength of RC cantilever slabs bonded with GFRP strips,”Journal of Composites for Construction, Vol. 5 No. 4, pp. 221-227, 2001.
    Limam, O., Foret, G. and Ehrlacher, A.,“RC two-way slabs strengthened with CFRP strips: experimental study and a limit analysis approach,” Composite Structures, Vol. 60, pp. 467-471, 2003.
    Lin, W. P. and Hu, H. T., “Nonlinear Analysis of Fiber-Reinforced Com-posite Laminates Subjected to Uniaxial Tensile Load,” Journal of Compo-site Materials, Vol. 36, No. 12, pp. 1429-1450, 2002.
    Lin, W. P. and Hu, H. T., “Parametric Study on the Failure of Fiber Reinforced Composite Laminates under Biaxial Tensile Load,” Journal of Composite Materials, Vol. 36, No. 12, pp. 1481-1504, 2002.
    Lin, T.Y., ”Strength of Continuous Prestressed Concrete Beams Under Static and Repeated Loads ,” ACI Journal , No. 10, 1955
    Maalej, M. and Bian, Y., ”Interfacial Shear Stress Concentration in FRP-Strengthened Beams,” Composite Structures, Vol. 54, pp. 417-426, 2001.
    Maekawa, K. and Okamura, H., “The Deformational Behavior and Constitutive Equation of Concrete Using the Elasto-Plastic and Fracture Mod-el,” Journal of the Faculty of Engineering, The University of Tokyo, Vol. XXXVII, No. 2, pp. 253-328, 1983.
    Malek, A. M., Saadatmanesh, H., and Ehsani, M. R., “Prediction of Failure Load of R/C Beams Strengthened with FRP Plate Due to Stress Concentration at the Plate End,” ACI Structural Journal, Vol. 95, No. 1, pp. 142-152, 1998.
    Meier,U. and Kaiser, H., “Strengthening of structures with CFRP laminates,” In Proc. ASCE Specialty Confrence on Advanced Composites Material in Civil Engineering Structures, ASCE, New York, NY, pp.224-232, 1991.
    Mufti, A. A., Erki, M. A. and Jaeger,L. G., “Advanced Composite Material with Applications to Bridge,” State-of-the-art report, CSCE, Montreal, Canada, 1991.
    Mirmiran, A. and Shahawy, M., “Behavior of concrete columns confined by fiber composites,” Journal of Structural Engineering, Vol. 123., No. 5, pp.583-590, 1997.
    Mosallam, A. S. and Mosalam, K. M., “Strengthening of two-way concrete slabs with FRP composites laminates,” Construction and Building Materials, Vol. 17, pp. 43-54, 2003.
    Naaman, Antoine E., “Prestressed Concrete Analysis and Design”, McGraw-Hill Book Company
    Narayanaswami, R. and Adelman, H. M., ”Evaluation of tensor plynomial and hoffman strength theories for composite-materials,” Journal of Composite Materials, Vol. 11, pp. 366-377, 1977.
    Nawy, Edward G., ”Prestressed Concrete A Fundamental Approach”, Prentice Hall, 1989.
    Nelissen, L. J. M., “Biaxial Testing of Normal Concrete,” Heron, Delft, the Netherlands, Vol. 18, No. 1, pp. 1-90, 1972.
    Nilson, A. H. , Design of Prestressed Concrete, John Wiley & Sons, New York, 1987.
    Nilson, A. H., George Winter, Design of Concrete Structures, McGraw-Hill, New York, 1991.
    Park ,R. and Paulay, T., “Reinforced Concrete Structures,” ,John Wiley & Sons, 1975
    “PCI Design Handbook-Precast and Prestressed Concrete,” 4th edition. Prestressed Concrete Institute, Chicago, IL, 1992.
    Rabczuk ,T. , Akkermann , J. and Eibl , J., “A numerical model for reinforced concrete structures,” International Journal of Solid and Structures, Vol. 42, No. 4, pp. 490-500, 1991.
    Rabczuk ,T. and Eibl ,J., “Numerical analysis of prestressed concrete beams using a coupled element free Galerkin/finite element approach,” International Journal of Solid and Structures, Vol. 41, pp. 1061-1080, 2004
    Rabczuk ,T. , Akkermann , J. and Eibl , J., “A numerical model for reinforced concrete structures,” International Journal of Solid and Structures, Vol. 42, pp. 1327-1354, 2005
    Roca, P. and Mari, A. R., “Nonlinear geometric and material analysis of prestressed concrete general shell structure,” Computers & Structures, Vol. 46, No. 5, pp. 917-929, 1993
    Ritchie, P. A., Thomas, D. A., Lu, L. W. and Connelly, G. M., “External reinforcement of concrete beams using fiber reinforced plastics,” ACI Structural J., Vol. 88, pp. 1327-1354, 2005.
    Saenz, L. P., Discussion of “Equation for the Stress-Strain Curve of Cncrtet,” by Desayi, P. and Krishnan, S., ACI Journal, Proceedings, Vol. 61, No. 9., pp. 1229-1235, September 1964.
    Saadatmanesh, H. and Ehsani, M. R., “Fiber composites laminates can strength beams,” Concrete International: Design & Construction, Vol. 12, No. 3, pp. 65-71, 1990.
    Saadatmanesh, H. and Ehsani, M. R., “RC Beams Strengthened with GFRP Plates. I : Experimental Study,” Journal of Structural Engineering, Vol. 117, No. 11, pp. 3417-3433, 1991.
    Seim, W., Hörman, M., Karbhari, V. and Seible, F., “External FRP Poststrengthening of Scaled Concrete Slabs,” Journal of Composites for Construction, Vol. 5, No. 2, pp.67-75, 2001.
    Seim, W., Vasquez, A., Karbhari, V. and Seible, F. , “Poststrengthening of concrete slabs: full-scale testing and design recommendations,” Journal of Structural Engineering, Vol. 129, No. 6, pp.743-752, 2003.
    Shahawy, M. and Beitelman, T., “Structural applications of advanced composite materials in bridge construction and repair,” In Proc. ASCE Structures Congress ⅩⅢ, Theme: Restructuring: America and Beyond,Boston,Massachusetts, ASCE, New York, NY, pp. 796-815, 1995.
    Shahawy, M. A., Beitelman, T., Arockiasamy, M., and Sowrirajan, R., “Experimental investigation on structural repair and strengthening of damaged prestressed concrete slabs utilizing externally bonded carbon laminates,” Composites Part B-Engineering, Vol. 27, No. 3-4, pp. 217-224, 1996.
    Shahawy, M. A., Beitelman, T., Arockiasamy, M., and Sowrirajan, R., “Reinforced concrete rectangular beams strengthened with CFRP laminates,” Composites Part B, Vol. 27, pp. 225-233, 1996.
    Teng, J. G., Cao, S. Y. and Lam, L., “Behavior of GFRP-Strengthened RC Cantilever slabs,” Construction and Building Material, Vol. 15, pp. 339-349, 2001.
    Teng, J. G., Chen, J. F., Smith, S. T. and Lam, L., FRP Strengthened RC Structures, John Wiley & Sons, Inc., 2002.
    Triantafillou, T. C., Deskovic, N. and Deuring, M., “Strengthening of concrete structures with prestressed fiber reinforced plastic sheets,” ACI Structural J., Vol. 89, No. 3, pp. 235-244, 1992.
    Triantafillou, T. C., “Shear Strengthening of Reinforced Concrete Beams Using Epoxy-Bonded FRP Composites,” ACI Structural Journal, Vol. 95, No. 2, pp. 107-115, 1998.
    Tsai, S. W. and Wu, E. M., “A general theory of strength for anisotropic materials,” Journal of Composite Materials, Vol. 5, pp. 58-80, 1971.
    Xiao, Y., Priestely, M. J. N. and Seible, F., “Seismic Assessment and Retrofit of Bridge Column Footings,” ACI Structural Journal, Vol. 93, No. 1, pp. 79-94, 1996.
    Zhu, R. R.-H., Hsu, T. T.-C. and Lee, J.-Y., “Rational Shear Modulus for Smeared-Crack Analysis of Reinforced Concrete,” ACI Structural Journal, Vol. 98, No. 4, pp. 443-450, 2001.
    林育弘,”壓水式核能電廠預力鋼筋混凝土圍阻體極限耐壓能力分析”,國立成功大學土木工程學系,碩士論文,中華民國八十四年六月。
    林福銘,”纖維複合疊層材料補強鋼筋混凝土版之數值模擬,” 國立成功大學土木工程學系,博士論文,中華民國九十四年六月。
    劉欣婷,”預力混凝土材料組合律之數值模擬,” 國立成功大學土木工程學系,碩士論文,中華民國九十四年七月。
    洪筱君,” 複合材料圓柱殼受扭力之非線性分析,” 國立成功大學土木工程學系,碩士論文,中華民國九十五年六月。
    楊詩蔚,”纖維加勁複合材料管補強混凝土柱受軸壓之非線性分析,” 國立成功大學土木工程學系,碩士論文,中華民國九十六年六月。

    下載圖示 校內:立即公開
    校外:2008-08-07公開
    QR CODE