| 研究生: |
洪祥恩 Hong, Xiang-En |
|---|---|
| 論文名稱: |
具高效率及內建補償網路之遲滯電流模式非反向升-降壓型直流-直流轉換器 A High Efficiency Hysteretic-Current-Mode Non-Inverting Buck-Boost DC-DC Converter with Built-In Compensation Network |
| 指導教授: |
魏嘉玲
Wei, Chia-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 遲滯電流模式 、升-降壓 、直流-直流轉換器 、高效率 |
| 外文關鍵詞: | hysteretic-current-mode, buck-boost, DC-DC converter, high efficiency |
| 相關次數: | 點閱:57 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於可攜式電子產品的蓬勃發展,許多高規格與多功能之電子產品(例如:智慧型手機、平板電腦…等等)市場需求大增,針對此類電子產品,本論文提出一個擁有高效率、並將補償網路內置晶片的非反向升–降壓型直流-直流轉換器。有別於傳統之升–降壓功率級的切換,本論文採用升壓或降壓的切換,可降低導通損失與切換損失,以提高轉換效率;而在系統控制方面,採用遲滯電流的控制方法,讓本轉換器工作於輕載時自動降頻,以更進一步減少切換損失,而工作於重載時擁有類似脈波寬度調變控制之表現,得到較小之輸出漣波。除此之外,本論文使用電容倍乘器與內建電阻,將晶片外部之被動補償元件內建於晶片中。如此一來,此轉換器便可擁有更好的系統晶片整合,及低成本與高效率之特性。
本論文設計之晶片使用台灣積體電路公司0.35 μm 2P4M 5 V混合訊號製程,晶片大小約為4 mm2。當輸入電壓為2.5~5 V、輸出負載電流為10~400 mA時,輸出電壓均可穩定於3.3 V,並且最高效率可達到98%。
Due to the development of portable electronic devices, more and more high performance, battery-powered, and multifunctional devices (e.g., smartphone, tablet) are introduced to the market. For these devices, a high-efficiency buck-boost DC-DC converter with built-in compensation network is proposed in this thesis. This converter uses buck or boost mode (BOBM) control to reduce both switching and conduction losses, which is different from the traditional buck-boost conversion. By using hysteretic-current-mode (HCM), the light-load efficiency can be further improved due to reduced switching frequency. Moreover, the capacitor multiplier and on-chip resistors are used to replace traditionally off-chip compensation network. Therefore, the proposed converter has the advantages of low-cost and high efficiency, and is also good for system-on-chip (SoC) applications.
The chip was fabricated by using TSMC 0.35 μm 2P4M 5 V mixed-signal process, and the chip size is about 4 mm2. The input voltage range is 2.5–5 V, the output voltage is set to 3.3V, and the load current can range from 10 to 400 mA. The measured maximal efficiency is 98%.
[1] G. A. Rincon-Mora and P. E. Allen, “A low-voltage, low quiescent current, low drop-out regulator,” IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 36–44, Jan. 1998.
[2] B. Gregoire, “A compact switched-capacitor regulated charge pump power supply,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1944–1953, Aug. 2006.
[3] C. L. Wei, C. H. Chen, K. C. Wu, and I. T. Ko, “Design of an average-current-mode noninverting buck-boost DC-DC converter with reduced switching and conduction losses,” IEEE Trans. Power Electron., vol. 27, no.12, pp. 4934–4943, Dec. 2012.
[4] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA: Kluwer Academic, 2001.
[5] P. Midya, K. Haddad, and M. Miller, “Buck or boost tracking power converter,” IEEE Power Electron. Lett., vol. 2, no. 4, pp. 131–134, Dec. 2004.
[6] C. Deisch, “Simple switching control method changes power converter into a current source,” in Proc. IEEE Power Electron. Specialists Conf., 1978, pp. 300–306.
[7] S. Hsu, A. Brown, L. Rensink, and R. Middlebrook, “Modeling and analysis of switching DC-to-DC converters in constant frequency current programmed mode,” in Proc. IEEE Power Electron. Specialists Conf., 1979, pp. 284–301.
[8] L. Dixon, “Average current mode control of switching power supplies,” in Proc. Unitrode Power Supply Design Sem., 1990.
[9] Y. Chen, C. K. Tse, S. Qiu, L. Lindenmuller, and W. Schwarz, “Coexisting fast-scale and slow-scale instability in current-mode controlled DC/DC converters: analysis, simulation and experimental results,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 10, pp. 3335–3348, Nov. 2008.
[10] R. Redl and J. Sun, “Ripple-based control of switching regulator – an overview,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2669–2680, Dec. 2009.
[11] Y. Zheng, H. Chen, and K. N. Leung, “A fast-response pseudo-PWM buck converter with PLL-based hysteresis control,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 7, pp. 1167–1174, Jul. 2012.
[12] T. H. Wu, J. J. Chen, and Y. S. Hwang, “A high-efficiency hysteresis buck converter using auto selectable frequency-locked techniques,” in IEEE Int. Conf. of Electron Devices and Solid-State Circuits (EDSSC), 2013, pp. 1–2.
[13] F. Su, W. H. Ki, and C. Y. Tsui, “Ultra fast fixed-frequency hysteretic buck converter with maximum charging current control and adaptive delay compensation for DVS applications,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 815–822, Apr. 2008.
[14] P. Li, D. Bhatia, L. Xue, and R. Bashirullah, “A 90-240 MHz hysteretic controlled DC-DC buck converter with digital phase locked loop synchronization,” IEEE J. Solid-State Circuits, vol. 46, no. 9, pp. 2108–2119, Sep. 2011.
[15] R. Redl, Y. Li, and G. Reizik, “Switched noise filter for the buck converter using the output ripple as the PWM ramp,” in Proc. IEEE APEC, 2005, pp. 918–924.
[16] Y. H. Lee, W. W. Lai, W. Y. Pai, K. H. Chen, M. J. Du, and S. H. Cheng, “Reduction of equivalent series inductor effect in delay-ripple reshaped constant on-time control for buck converter with multi-layer ceramic capacitors,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2366–2376, May 2013.
[17] Y. H. Lee, S. J. Wang, and K. H. Chen, “Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 829–838, Apr. 2010.
[18] F. Su and W. H. Ki, “Digitally assisted quasi-V2 hysteretic buck converter with fixed frequency and without using large-ESR capacitor,” in Proc. IEEE Int. Solid-State Circuits Conf., 2009, pp. 446–447.
[19] C. S. Huang, C. Y. Wang, J. H. Wang, and C. H. Tsai, “A fast-transient quasi-V2 switching buck regulator using AOT control,” in Proc. IEEE Asian Solid-State Circuits Conf., 2011, pp. 53–56.
[20] J. S. Guo, S. M. Lin, and C. H. Tsai, “A hysteretic boost regulator with emulated-ramp feedback (ERF) Current-Sensing Technique for LED driving applications,” in Proc. IEEE Asian Solid-State Circuits Conf., 2013, pp. 61–64.
[21] Y. P. Su, Y. K. Luo, Y. C. Chen, and K. H. Chen, “Current-mode synthetic control technique for high-efficiency DC-DC boost converters over a wide load range,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 1, no. 9, pp. 1–13, Aug. 2013.
[22] W. H. Ki, K. M. Lai, and C. Zhan, “Charge balance analysis and state transition analysis of hysteretic voltage mode switching converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 5, pp. 1142–1153, May 2011.
[23] J. C. Tsai, C. L. Chen, Y. H. Lee, H. Y. Yang, M. S. Hsu, and K. H. Chen, “Modified hysteretic current control (MHCC) for improving transient response of boost converter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 8, pp. 1967–1979, Aug. 2011.
[24] J. H. Park and B. H. Cho, “Small signal modeling of hysteretic current mode control using the PWM switch model,” in IEEE COMPEL, 2006, pp. 225-230.
[25] B. Sahu and G. A. Rincon-Mora, “A high-efficiency linear RF power amplifier with power-tracking dynamically adaptive buck-boost supply,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 1, pp. 112–120, Jan. 2004.
[26] P. C. Huang, W. Q. Wu, H. H. Ho, and K. H. Chen, “Hybrid buck–boost feedforward and reduced average inductor current techniques in fast line transient and high-efficiency buck–boost converter,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 719–730, Mar. 2010.
[27] J. J. Chen, P. N. Shen, and Y. S. Hwang, “A high efficiency positive buck–boost converter with mode-select circuit and feed-forward techniques,” IEEE Trans. Power Electron., vol. 28, no. 9, pp. 4240–4247, Sep. 2013.
[28] M. Lin, Y. S. Huang, A. Ehrhart, Y. H. Lee, C. C. Chiu, B. Wicht, and K. H. Chen, “Authentic mode-toggled detector with fast transient response under wide load range buck-boost converter,” in Proc. IEEE Int. Symposium on Circuits and Syst., 2013, pp. 2952–2955.
[29] D. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, Inc., 1997.
[30] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York: Oxford, 2002.
[31] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[32] W. M. C. Sansen, Analog Design Essentials. Dordrecht, Netherland: Springer, 2008.
校內:2019-08-25公開