| 研究生: |
嗗吉哈 Ahmad, Wajiha |
|---|---|
| 論文名稱: |
雙項多孔彈性模型於腕隧道症候群:進階診斷、治療與預防的有限元素框架 Biphasic Poroelastic Modeling of Carpal Tunnel Syndrome: A Finite Element Framework for Advancing Diagnosis, Treatment and Prevention |
| 指導教授: |
楊岱樺
Yang, Tai-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 170 |
| 中文關鍵詞: | 雙相材料 、多孔彈性 、腕管綜合症 、腕管 、有限元素分析 、生物力學 |
| 外文關鍵詞: | Biphasic Materials, Poroelasticity, Carpal Tunnel Syndrome, Carpal Tunnel, Finite element analysis, Biomechanics |
| 相關次數: | 點閱:83 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腕隧道症候群(Carpal Tunnel Syndrome, CTS)是最常見的周邊神經病變形式,其特徵是正中神經(Median Nerve, MN)在腕隧道(Carpal Tunnel, CT)內受到壓迫。病理生理學證據表明,腕隧道內壓(Intracarpal Tunnel Pressure, ICTP)的增加是其發展的關鍵驅動因素,而這與手指和手腕姿勢等生物力學因素密切相關。儘管已有廣泛的研究,但現有的生物力學模型——包括彈性、超彈性和粘彈性模型——未能準確描述腕隧道組織中固體與液體的交互作用。
本研究首次採用準靜態瞬態雙相多孔彈性框架來建模腕隧道,解決了以往方法中的關鍵局限性,並推進了對CTS病理生理學的理解。通過有限元素分析(Finite Element Analysis, FEA),本研究檢視了手腕屈曲(10°)、手腕伸展(10°)及單獨手指屈曲(10°、15°、20°)對CTS發展的影響。雙相多孔彈性模型將屈肌腱(Flexor Tendons, FT)、正中神經(MN)和下滑膜結締組織(Subsynovial Connective Tissues, SSCT)的固體基質假定為完全被液體飽和,從而能模擬腕隧道內的液體交換與形變。
結果顯示,手腕屈曲誘發了最高的正中神經應變,這與臨床診斷方法如Phalen測試一致。然而,腕隧道內壓在手腕伸展時達到峰值,這與以往的實驗結果一致。此外,隨著手指屈曲角度的增加,腕隧道內壓和正中神經壓迫也隨之增強,突顯了極端屈曲姿勢的生物力學重要性。此前研究表明,手腕屈曲與手指屈曲的結合會加劇正中神經的壓迫,本研究基於觀察到的機制對此結果進行了近似估算。本研究強調了採用雙相多孔彈性框架研究CTS的創新性,首次在計算上捕捉了腕隧道內間質液行為與固體形變的交互作用。通過整合機械負荷、組織形變和液體傳輸現象,該研究提供了關於非中立姿勢如何促進CTS的關鍵見解。研究結果對提高診斷準確性、設計減壓手術、優化康復方案以及開發預防CTS的符合人體工學的干預措施具有重要意義。
本研究不僅將理論建模與臨床相關性相結合,還為周邊神經病變的生物力學研究樹立了新的標杆。通過探討腕隧道組織的複雜雙相多孔彈性行為,該研究為未來雙相生物力學研究奠定了堅實的基礎,並深化了對CTS發病機制、預防、診斷及管理的科學認識。
Carpal Tunnel Syndrome (CTS) is the most prevalent form of peripheral neuropathy, characterized by compression of median nerve (MN) within the carpal tunnel (CT). Pathophysiological evidence highlights that increased intracarpal tunnel pressure (ICTP), influenced by biomechanical factors such as fingers and wrist posture, is a key driver in its development. Despite extensive research, existing biomechanical models—elastic, hyperelastic, and viscoelastic—fail to accurately account for the solid-fluid interactions inherent in the CT tissues.
This study pioneered the application of a quasi-static transient biphasic poroelastic framework to model the CT, addressing critical limitations in prior approaches and advancing the understanding of CTS pathophysiology. Using finite element analysis (FEA), the study examined the effects of wrist flexion (10°), wrist extension (10°), and isolated fingers flexion (10°, 15°, 20°) on CTS development. The biphasic poroelastic model considered the solid matrix of the flexor tendons(FT), median nerve (MN) and subsynovial connective tissues(SSCT) to be completely saturated with fluid, enabling the simulation of fluid exchange and deformation within the CT.
Results demonstrate that wrist flexion induced the highest MN strain, aligning with clinical diagnostics such as Phalen's test. However, ICTP was found to peak during wrist extension, consistent with previous experimental findings. Additionally, increasing the angle of finger flexion amplifies the ICTP and compression of the MN, highlighting the biomechanical significance of extreme flexion. Previous studies suggest that combining wrist flexion with fingers flexion would exacerbate MN compression, and this study approximated such outcomes, based on the observed mechanics.
This study highlighted the novelty of employing a biphasic poroelastic framework for CTS, making it the first to computationally capture interstitial fluid behavior and solid deformation interactions within the CT. By integrating mechanical loading, tissue deformation, and fluid transport phenomena, this research provided critical insights into how non-neutral postures contribute to CTS. The findings hold significant implications for enhancing diagnostic precision, designing pressure-relieving surgical procedures, optimizing rehabilitation protocols, and developing ergonomic interventions to mitigate CTS risk.
This work not only bridged theoretical modeling with clinical relevance but also set a new benchmark for biomechanical studies of peripheral neuropathies. By addressing the intricate biphasic poroelastic behavior of CT tissues, this study established a robust foundation for future research in biphasic biomechanics and enhances the scientific understanding of CTS pathogenesis, prevention, diagnosis and management.
1. Poroelasticity. Multiphysics Learning & Networking.
2. Phalen's Test (Phalen's Maneuver). 2016; Available from: https://freedpt.wordpress.com/2016/10/07/phalens-test-phalens-maneuver/.
3. Jeans, O. The Median Nerve. TeachMe Anatomy 2024; Available from: https://teachmeanatomy.info/upper-limb/nerves/median-nerve/.
4. Peter J. Keir, J.M.B., David M. Rempel, Effects of finger posture on carpal tunnel pressure during wrist motion. 1998. 23(6): p. 1004-1009.
5. Peshin, S.K., Y.; Kuchumov, A.G, Finite Element Modeling of the Fingers and Wrist Flexion/Extension Effect on Median Nerve Compression. Appl. Sci., 2023. 13.
6. Insights, S. Carpal Tunnel Release Systems Market Size, report to 2032. 2023; Available from: https://www.sphericalinsights.com/reports/carpal-tunnel-release-systems-market#:~:text=The%20Market%20is%20Growing%20at,fastest%20during%20the%20forecast%20period.
7. Deek, R., et al. Four-Dimensional CT Assessment of the Transverse Carpal Ligament Attachments-A Pilot Study. 2020.
8. Yamamoto M, C.J., Hirata H. , Trends in Open vs. Endoscopic Carpal Tunnel Release: A Comprehensive Survey in Japan. J Clin Med., 2022. 11(17:4966).
9. Carvalho, C.R., Oliveira, J. M., & Reis, R. L, Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Frontiers in bioengineering and biotechnology, 2019. 7(337).
10. Werthel, J.D., Zhao, C., An, K. N., & Amadio, P. C, Carpal tunnel syndrome pathophysiology: role of subsynovial connective tissue. Journal of wrist surgery, 2014. 3(4): p. 220-226.
11. Keir PJ, B.J., Hudes M, Rempel DM, Guidelines for wrist posture based on carpal tunnel pressure thresholds. Hum Factors, 2007. 49(1): p. 88-99.
12. [Internet], S., 3D Medical illustration of the Wrist Bones of the Human Body Scientific Animations, in Anatomy, Shoulder and Upper Limb, Hand Carpal Bones. 2024, StatPearls Publishing: TreasureIsland (FL).
13. Ratnaparkhi, R., et al., Changes in carpal tunnel compliance with incremental flexor retinaculum release. Journal of Orthopaedic Surgery and Research, 2016. 11(1): p. 43.
14. N, A., Carpal tunnel. BMJ, 2014. 349:0.
15. Williams, E.H. Jobs associated with carpal tunnel syndrome. Available from: https://www.baltimoreperipheralnervepain.com/library/jobs-associated-with-carpal-tunnel-syndrome.cfm#:~:text=Assembly%20line%20workers%2C%20factory%20workers,repetitive%20nature%20of%20their%20work.
16. Fan ZJ, H.-A.C., Gerr F, Eisen EA, Hegmann KT, Bao S, Silverstein B, Evanoff B, Dale AM, Thiese MS, Garg A, Kapellusch J, Burt S, Merlino L, Rempel D, Associations between workplace factors and carpal tunnel syndrome: A multi-site cross sectional study. Am J Ind Med. , 2015. 58(5): p. 509-518.
17. Kubo K, C.Y., Zhou B, An KN, Moran SL, Amadio PC, Zhang X, Zhao C, The quantitative evaluation of the relationship between the forces applied to the palm and carpal tunnel pressure. J Biomech., 2018. 66: p. 170-174.
18. Klokkari D, M.I., Effectiveness of surgical versus conservative treatment for carpal tunnel syndrome: A systematic review, meta-analysis and qualitative analysis. Hong Kong Physiother J. , 2018. 38(2): p. 91-114.
19. Ettema AM, e.a., Gliding characteristics of flexor tendon and tenosynovium in carpal tunnel syndrome: a pilot study. Clin Anat. , 2007. 20(3): p. 292-299.
20. Ko C, B.T., A fluid-immersed multi-body contact finite element formulation for median nerve stress in the carpal tunnel. Comput Methods Biomech Biomed Engin., 2007. 10(5): p. 343-349.
21. Henderson J, T.A., Yoshii Y, Zhao KD, Amadio PC, An KN, Finite element model of subsynovial connective tissue deformation due to tendon excursion in the human carpal tunnel. 2011. 44(1): p. 150-155.
22. Filius A, T.A., Ozasa Y, An KN, Zhao C, Amadio PC, Delineation of the mechanisms of tendon gliding resistance within the carpal tunnel. Clin Biomech (Bristol, Avon), 2017. 41: p. 48-53.
23. Kiritsis PG, K.S., Biomechanical changes after carpal tunnel release: a cadaveric model for comparing open, endoscopic, and step-cut lengthening techniques. J Hand Surg Am, 1995. 20(2).
24. Park JS, W.H., Oh JY, Kim DH, Hwang SC, Yoo J Il, Value of cross-sectional area of median nerve by MRI in carpal tunnel syndrome. Asian J Surg, 2020. 43.
25. Cebral JR, L.R., From medical images to anatomically accurate finite element 791 grids. . Int J Numer Methods Eng, 2001. 51.
26. Guo X, F.Y., Li ZM, Three-dimensional finite element analysis on the morphological change of the transverse carpal ligament, in 2007 IEEE/ICME International Conference on Complex Medical Engineering, CME 2007. 2007.
27. Yao Y, E.A., Li ZM, Finite element analysis for transverse carpal ligament tensile strain and carpal arch area. J Biomech, 2018. 73.
28. Ko, C., and Thomas D Brown, A fluid-immersed multi-body contact finite element formulation for median nerve stress in the carpal tunnel. Computer methods in biomechanics and biomedical engineering, 2007. 10(5): p. 343-349.
29. Mouzakis DE, R.G., Zaoutsos S, Eleftheriou A, Malizos KN, Finite element simulation of the mechanical impact of computer work on the carpal tunnel syndrome. J Biomech, 2014. 47(12): p. 2989-2994.
30. Wei Y, Z.Z., Wei G, Ren L, Qian Z, Subject-Specific Finite Element Modelling of the Human Hand Complex: Muscle-Driven Simulations and Experimental Validation. Ann Biomed Eng, 2020. 48(4): p. 1181-1195.
31. Main EK, G.J., Baer TE, Klocke NF, Brown TD, Volar/dorsal compressive mechanical behavior of the transverse carpal ligament. J Biomech, 2012. 45.
32. Main EK, G.J., James Rudert M, Goreham-Voss CM, Brown TD, Apparent transverse compressive material properties of the digital flexor tendons and the median nerve in the carpal tunnel. J Biomech, 2011. 44.
33. R, O., Non-linear elastic deformations. Eng Anal Bound Elem, 1984. 1.
34. Osamura N, Z.C., Zobitz ME, An KN, Amadio PC, Evaluation of the material properties of the subsynovial connective tissue in carpal tunnel syndrome. Clin Biomech, 2007. 22.
35. Matsuura Y, T.A., Zhao C, Amadio PC, An KN, Development of a hyperelastic material model of subsynovial connective tissue using finite element modeling. J Biomech, 2016. 49.
36. BR, S., Multiphase poroelastic finite element models for soft tissue structures. Apll Mech Rev, 1992. 45: p. 191-218.
37. DiSilvestro MR, S.J., A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. Journal of biomechanics, 2001. 34: p. 519-525.
38. Su L, W.M., Yin J, Ti F, Yang J, Ma C, Liu S, Lu TJ, Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale. Acta Biomater, 2023. 155: p. 423-435.
39. Causin P, G.G., Harris A, Prada D, Sacco R, Terragni S, A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head. Math Biosci, 2014. 257: p. 33-41.
40. Berger L, B.R., Burrowes K, Grau V, Tavener S, Kay D, A poroelastic model coupled to a fluid network with applications in lung modelling. Int J Numer Method Biomed Eng, 2016. 32(1).
41. SC, C., Bone poroelasticity. J Biomech, 1999. 32(3): p. 217-238.
42. Tan WS, M.A., Stevens MM, Minimum design requirements for a poroelastic mimic of articular cartilage. J Mech Behav Biomed Mater, 2023. 137.
43. Langen, C.D., A Patient-Specific Poroelastic Model of a Brain with a Subdural Hematoma. 2012.
44. Cao Y, T.J., Investigation of resistance of digital subcutaneous edema to gliding of the flexor tendon: an in vitro study. J Hand Surg Am, 2005. 30: p. 1248-1254.
45. Elliott DM, R.P., Gimbel JA, Sarver JJ, Abboud JA, Iozzo RV, Soslowsky LJ, Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Annals of Biomedical Engineering, 2003. 31: p. 599-605.
46. Sud V, T.M., Freeland AE, Smith WT, Grinspun K, Absorptive properties of synovium harvested from the carpal tunnel. Microsurgery, 2002. 22: p. 316-319.
47. Chou D, L.Y., Mustansar Z, Chung CY, Using a poroelastodynamic model to investigate the dynamic behaviour of articular cartilage. Comput Methods Programs Biomed, 2023. 233.
48. Wikipedia. Porous Medium. Available from: https://en.wikipedia.org/wiki/Porous_medium.
49. Cheng, A.H.-D., Theory and Applications of Transport in Porous Media. Vol. 27. 2016.
50. Ehret AE, B.K., Stracuzzi A, Marina V, Zündel M, Mazza E, Inverse poroelasticity as a fundamental mechanism in biomechanics and mechanobiology. Nat Commun, 2017. 8(1).
51. Olivier Coussy, L.D., Emmanuel Detournay, From mixture theory to biot’s approach for porous media. International Journal of Solids and Structures, 1998. 35(34-35): p. 4619-4635.
52. De Boer, R., Development of porous media theories — A brief historical review. Transp Porous Med, 1992. 9: p. 155-164.
53. Bowen, R.M., Compressible porous media models by use of the theory of mixtures,. International Journal of Engineering Science, 1976. 20(6): p. 697-735.
54. Rajagopal, K., On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Mathematical Models and Methods in Applied Sciences, 2007. 17.
55. M, B., General theory of three-dimensional consolidation. Journal of Applied Physics, 1941. 12: p. 155-164.
56. Biot, M.A., Theory of Elasticity and Consolidation for a Porous Anisotropic Solid Journal of Applied Physics, 1955. 26(5): p. 182-185.
57. Biot, M.A., Theory of Deformation of a Porous Viscoelastic Anisotropic Solid Journal of Applied Physics
1956. 27(5): p. 459-467.
58. O. C. Zienkiewicz, T.S., Dynamic behaviour of saturated porous media; The generalized Biot formulation and its numerical solution. 1984. 8(1): p. 71-96.
59. Prévost, J.H., Mechanics of continuous porous media. International Journal of Engineering Science, 1980. 18(6): p. 787-800.
60. Wang, H.F., Theory of linear poroelasticity with applications to geomechanics and hydrogeology
2000: Princeton University Press.
61. R.S. Sandhu, E.L.W., Finite-element analysis of seepage in elastic media
Journal of the Engineering Mechanics Division, 1969. 95(3): p. 641-652.
62. Maas SA, E.B., Ateshian GA, Weiss JA, FEBio: Finite elements for biomechanics. Journal of Biomechanical Engineering, 2012. 134(1).
63. MA, B., General Theory of Three‐Dimensional Consolidation. Journal of Applied Physics, 1941. 12(2): p. 155-164.
64. Shah R, L.Z., Ligament and Bone Arch Partition of the Carpal Tunnel by Three-Dimensional Ultrasonography. J Biomech Eng, 2020. 142(9).
65. Davies, K. The Carpal Tunnel. TeachMe Anatomy 2020; Available from: https://teachmeanatomy.info/upper-limb/areas/carpal-tunnel/.
66. Tang A, V.M., Anatomy, Shoulder and Upper Limb. Hand Carpal Bones, 2022.
67. Prantil RK, X.K., Kim KE, Gaitan DM, Sacks MS, Woo SL, Li ZM, Fiber orientation of the transverse carpal ligament. Clin Anat., 2012. 25(4): p. 478-482.
68. JN, W., Profiles of the carpal canal. J Bone Joint Surg, 1954. 36: p. 127-132.
69. H, G., Anatomy of the human body. 13 ed. 1985, Philadelphia: Lea & Febiger.
70. Hoppenfeld S, d.P., Buckley R, Surgical exposures in orthopaedics: the anatomic approach. 1984, Philadelphia: JB Lippincott. 162-165.
71. Cobb TK, D.B., Posteraro RH, Lewis RC, Anatomy of the flexor retinaculum. J Hand Surg Am, 1993. 18(1): p. 91-99.
72. Gartsman GM, K.J., Crouch CC, Noble PC, Bennett JB, Carpal arch alteration after carpal tunnel release. J Hand Surg Am, 1986. 11(3): p. 372-374.
73. Zhilei Liu Shen, Z.-M.L., Ultrasound Assessment of Transverse Carpal Ligament Thickness: A Validity and Reliability Study. Ultrasound in Medicine & Biology, 2012. 38(6): p. 982-988.
74. Ferrari, F.S., Della Sala, L., Cozza, S., Guazzi, G., Belcapo, L., Mariottini, A., Bolognini, A., Stefani, P, High resolution sonography of the carpal tunnel syndrome. Radiologia Medica, 1997. 93(4): p. 336-341.
75. A. Yesildag, S.K., N. Sengul, H.R. Koyuncuoglu, O. Oyar, K. Guler, U.K. Gulsoy, The role of ultrasonographic measurements of the median nerve in the diagnosis of carpal tunnel syndrome. Clinical Radiology. 59(10): p. 910-915.
76. Yifei Yao, A.E., Zong-Ming Li, Finite element analysis for transverse carpal ligament tensile strain and carpal arch area. Journal of Biomechanics, 2018. 73: p. 210-216.
77. Takashi Kato, N.K., Ichiro Okutsu, Setsuo Ninomiya, Effects of endoscopic release of the transverse carpal ligament on carpal canal volume. The Journal of Hand Surgery, 1994. 19(3): p. 416-419.
78. JS, M., Biomechanical models for the pathogenesis of specific distal upper extremity disorders. Am J Ind Med, 2002. 41(5): p. 353-369.
79. Holmes, M.W.R.e.a., Carpal tunnel and transverse carpal ligament stiffness with changes in wrist posture and indenter size. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 2011. 29(11): p. 1682-1687.
80. Netscher D, M.A., Lee M, Polsen C, Choi H, Steadman AK, Thornby J, Transverse carpal ligament: its effect on flexor tendon excursion, morphologic changes of the carpal canal, and on pinch and grip strengths after open carpal tunnel release. Plast Reconstr Surg, 1997. 100(3): p. 636-642.
81. Ethan R. Wiesler, G.D.C., Michael S. Cartwright, Beth P. Smith, Julia Rushing, Francis O. Walker, The Use of Diagnostic Ultrasound in Carpal Tunnel Syndrome. The Journal of Hand Surgery, 2006. 31(5): p. 726-732.
82. Fuss, F.K., and T F Wagner, Biomechanical alterations in the carpal arch and hand muscles after carpal tunnel release: a further approach toward understanding the function of the flexor retinaculum and the cause of postoperative grip weakness. Clinical anatomy (New York, N.Y.), 1996. 9(2): p. 100-108.
83. Ishiko T, P.C., Lotz JC, Diao E, Scaphoid kinematic behavior after division of the transverse carpal ligament. J Hand Surg Am, 2003. 28(2): p. 267-271.
84. Mashoof AA, L.H., Soifer TB, Miller-Soifer F, Bryk E, Vigorita V. C, Neural anatomy of the transverse carpal ligament. Clin Orthop Relat Res, 2001. 386: p. 218-221.
85. Presazzi A, B.C., Zacchino M, Madonia L, Draghi F, Carpal tunnel: Normal anatomy, anatomical variants and ultrasound technique. J Ultrasound, 2011. 14(1): p. 40-46.
86. Festen-Schrier VJMM, A.P., The biomechanics of subsynovial connective tissue in health and its role in carpal tunnel syndrome. J Electromyogr Kinesiol, 2018. 38: p. 232-239.
87. Benson DC, M.K., Varacallo M Anatomy, Shoulder and Upper Limb, Hand Flexor Pollicis Longus Muscle. 2023.
88. Ettema, A.M., Amadio, P. C., Zhao, C., Wold, L. E., & An, K. N, A histological and immunohistochemical study of the subsynovial connective tissue in idiopathic carpal tunnel syndrome. The Journal of bone and joint surgery, 2004. 86(7): p. 1458-1466.
89. Sawyer E, B.A., Launico MV, et al Anatomy, Shoulder and Upper Limb, Hand Ulnar Bursa. 2023.
90. Tan, W.S., Moore, A. C., & Stevens, M. M, Minimum design requirements for a poroelastic mimic of articular cartilage. Journal of the mechanical behavior of biomedical materials, 2023. 137.
91. Connizzo BK, G.A., Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology. J Biomech, 2017. 54: p. 11-18.
92. Goetz JE, B.T., Mechanical behavior of carpal tunnel subsynovial connective tissue under compression. Iowa Orthop J, 2011. 31: p. 127-132.
93. Li ZM, J.D., Carpal tunnel mechanics and its relevance to carpal tunnel syndrome. Hum Mov Sci, 2023. 87(103044).
94. Zhao C, E.A., Osamura N, Berglund LJ, An KN, Amadio PC, Gliding characteristics between flexor tendons and surrounding tissues in the carpal tunnel: a biomechanical cadaver study. J Orthop Res, 2007. 25(2): p. 185-190.
95. Ettema, A.M., Amadio, P. C., Zhao, C., Wold, L. E., O'Byrne, M. M., Moran, S. L., & An, K. N, Changes in the functional structure of the tenosynovium in idiopathic carpal tunnel syndrome: a scanning electron microscope study. Plastic and reconstructive surgery, 2006. 118(6): p. 1413-1422.
96. Lluch, A.L., Thickening of the synovium of the digital flexor tendons: cause or consequence of the carpal tunnel syndrome? Journal of hand surgery (Edinburgh, Scotland) 1992. 17(2): p. 209-212.
97. Meyer, P.e.a., The Median Nerve at the Carpal Tunnel … and Elsewhere. Journal of the Belgian Society of Radiology 2018. 102(1).
98. Nurdan Kotevoglu, S.G.-S., Ultrasound imaging in the diagnosis of carpal tunnel syndrome and its relevance to clinical evaluation. Joint Bone Spine, 2005. 72(2).
99. Rosso, G., and Jochen Guck, Mechanical changes of peripheral nerve tissue microenvironment and their structural basis during development. APL bioengineering 2019. 3(3).
100. Mizisin, A.P., and Ananda Weerasuriya, Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult. Acta neuropathologica, 2011. 121(3): p. 291-312.
101. Lloyd, T.E., Axonal transport disruption in peripheral nerve disease: From Jack's discoveries as a resident to recent contributions. Journal of the peripheral nervous system : JPNS 2012. 17(3): p. 46-51.
102. Padua L, C.D., Erra C, Pazzaglia C, Paolasso I, Loreti C, Caliandro P, Hobson-Webb LD Carpal tunnel syndrome: Clinical features, diagnosis, and management. The Lancet Neurology, 2016. 15(12): p. 1273-1284.
103. Rempel D, D.L., Lundborg G, Pathophysiology of nerve compression syndromes: response of peripheral nerves to loading. J Bone Joint Surg Am, 1999. 81(11): p. 1600-1610.
104. Dydyk AM, N.G., Sarwan G, Cascella M, Median Nerve Injury. StatPearls [Internet]. 2023, Treasure Island (FL): StatPearls Publishing.
105. ]. Wertsch JJ, M.J., Median nerve anatomy and entrapment syndromes: a review. Arch Phys Med Rehabil, 1982. 63(12): p. 623-627.
106. Murphy, K.A.a.D.M., Anatomy, Shoulder and Upper Limb, Median Nerve. StatPearls[Internet]. 2023, Treasure Island (FL): StatPearls Publishing.
107. Median Nerve. Available from: https://my.clevelandclinic.org/health/body/21889-median-nerve.
108. Taylor, T. The Median Nerve. 2024; Available from: https://www.innerbody.com/anatomy/nervous/median-nerve.
109. Mitchell R., C.A., Seal S., Mc. Knight L., Thoma A, Anatomical variations of the carpal tunnel structures. Can J Plast Surg, 2009. 17: p. 3-7.
110. Fitch MS, T.M., Wood EM, Kapellusch JM, Hegmann KT, The Coexistence of Carpal Tunnel Syndrome in Workers With Trigger Digit. Hand (N Y), 2021. 16(6): p. 753-758.
111. Lund CB, M.S., Thygesen LC, Hansson G-Å, Thomsen JF, Movements of the wrist and the risk of carpal tunnel syndrome: a nationwide cohort study using objective exposure measurements. Occup Environ Med, 2019. 76(8): p. 519-526.
112. Hulkkonen S, S.R., Auvinen J, Miettunen J, Karppinen J, Ryhänen J, Risk factors of hospitalization for carpal tunnel syndrome among the general working population. Scand J Work Environ Health, 2020. 46(1): p. 43-49.
113. Atroshi I, G.C., Johnsson R, Ornstein E, Ranstam J, Rosén I, Prevalence of carpal tunnel syndrome in a general population. JAMA, 1999. 282(2): p. 153-158.
114. Sevy JO, S.R., Varacallo M, StatPearls [Internet], in Carpal Tunnel Syndrome. 2024, StatPearls Publishing: Treasure Island (FL).
115. Ashworth, N.L. Carpal Tunnel Syndrome. Practice Essentials 2024; Available from: https://emedicine.medscape.com/article/327330-overview?&icd=login_success_email_match_fpf.
116. Genova A, D.O., Saefan A, Thakur M, Hassan A, Carpal Tunnel Syndrome: A Review of Literature. 2020. 12(3).
117. MS, A., Pathophysiology of carpal tunnel syndrome. Neurosciences (Riyadh), 2015. 20(1): p. 4-9.
118. de Krom MC, K.P., Kester AD, Thijs CT, Boekkooi PF, Spaans F, Carpal tunnel syndrome: prevalence in the general population. J Clin Epidemiol, 1992. 45(4): p. 373-376.
119. IE, G., Carpal tunnel syndrome in black South Africans. J Hand Surg Br, 1990. 15(1): p. 96-99.
120. Newington L, H.E., Carpal tunnel syndrome and work. Best Pract Res Clin Rheumatol, 2015. 29(3): p. 440-453.
121. Hagberg M, M.H., Kelsh M, Impact of occupations and job tasks on the prevalence of carpal tunnel syndrome. Scand J Work Environ Health, 1992. 18(6): p. 337-345.
122. Feng B, C.K., Zhu X, Ip WY, Andersen LL, Page P, Wang Y, Prevalence and risk factors of self-reported wrist and hand symptoms and clinically confirmed carpal tunnel syndrome among office workers in China: a cross-sectional study. BMC Public Health, 2021. 21(1).
123. Atroshi I, E.M., Turkiewicz A, Tägil M, Petersson IF, Incidence of physician-diagnosed carpal tunnel syndrome in the general population. Arch Intern Med, 2011. 171(10): p. 943-944.
124. Violante FS, F.A., Graziosi F, Marinelli F, Curti S, Armstrong TJ, et al, Carpal tunnel syndrome and manual work: the OCTOPUS cohort, results of a ten-year longitudinal study. Scand J Work Environ Health, 2016. 42(4): p. 280-290.
125. Komurcu HF, K.S., Anlar O, Relationship of age, body mass index, wrist and waist circumferences to carpal tunnel syndrome severity. Neurol Med Chir (Tokyo), 2014. 54(5): p. 395-400.
126. Lee HJ, K.I., Sung JH, Lee SW, Hong JT, Intraoperative dynamic pressure measurements in carpal tunnel syndrome: Correlations with clinical signs. 2016. 140: p. 33-37.
127. MacDermid JC, D.T., Clinical and electrodiagnostic testing of carpal tunnel syndrome: a narrative review. J Orthop Sports Phys Ther, 2004. 34(10): p. 565-588.
128. M, C., Carpal tunnel syndrome. Chir Main, 2014. 33(2): p. 75-94.
129. RA, W., Evaluation of work-related carpal tunnel syndrome. J Occup Rehabil, 2006. 16(2): p. 207-222.
130. Kim JY, K.J., Son JE, Yun SK, Prevalence of carpal tunnel syndrome in meat and fish processing plants. J Occup Health, 2004. 46(3): p. 230-234.
131. McCartan B, A.E., Taylor EJ, Haddad FS, Carpal tunnel syndrome. Br J Hosp Med (Lond), 2012. 73(4): p. 199-202.
132. Perkins BA, O.D., Bril V, Carpal tunnel syndrome in patients with diabetic polyneuropathy. Diabetes Care, 2002. 25(3): p. 565-569.
133. Millesi H, Z.G., Rath T, The gliding apparatus of peripheral nerve and its clinical significance. Ann Chir Main Memb Super, 1990. 9(2): p. 87-97.
134. GS, P., The carpal-tunnel syndrome. Seventeen years' experience in diagnosis and treatment of six hundred fifty-four hands. J Bone Joint Surg Am, 1996. 48(2): p. 211-228.
135. Werthel JD, Z.C., An KN, Amadio PC, Carpal tunnel syndrome pathophysiology: role of subsynovial connective tissue. J Wrist Surg, 2014. 3(4): p. 220-226.
136. Padua L, L.M.M., Padua R, Gregori B, Tonali P, Neurophysiological classification of carpal tunnel syndrome: assessment of 600 symptomatic hands. Ital J Neurol Sci, 1997. 18(3): p. 145-150.
137. Tanaka, S., Wild, D. K., Seligman, P. J., Behrens, V. J., Cameron, L. L., & Putz-Anderson, V, Prevalence and work-relatedness of self-reported carpal tunnel syndrome among U.S. workers: Analysis of the Occupational Health Supplement data of 1988 National Health Interview Survey. American Journal of Industrial Medicine, 1994. 25(4): p. 451-470.
138. Mondelli M, P.L., Reale F, Signorini AM, Romano C, Outcome of surgical release among diabetics with carpal tunnel syndrome. Arch Phys Med Rehabil, 2004. 85(1): p. 7-13.
139. Shiri, R., Miranda, H., & Viikari-Juntura, E, Risk factors of carpal tunnel syndrome: A review of the evidence. Seminars in Arthritis and Rheumatism, 2009. 38(5): p. 439-450.
140. Becker, J., Nora, D. B., Gomes, I., Stringari, F. E., Seitensus, R., Panosso, J. S., & Ehlers, J. A, An evaluation of gender, obesity, age and diabetes mellitus as risk factors for carpal tunnel syndrome. Clinics, 2002. 57(4): p. 365-372.
141. Stevens, J.C., Sun, S., Beard, C. M., O'Fallon, W. M., & Kurland, L. T, Carpal tunnel syndrome in Rochester, Minnesota, 1961 to 1980. Neurology, 1999. 39(3): p. 311-317.
142. Aroori, S., and Roy A J Spence, Carpal tunnel syndrome. The Ulster medical journal 2008. 77(1): p. 6-17.
143. Kuschner SH, E.E., Johnson D, Brien WW, Sherman R, Tinel's sign and Phalen's test in carpal tunnel syndrome. Orthopedics, 1992. 15(11): p. 1297-1302.
144. MacDermid, J.C., and Jean Wessel, Clinical diagnosis of carpal tunnel syndrome: a systematic review. Journal of hand therapy : official journal of the American Society of Hand Therapists, 2004. 17(2): p. 309-319.
145. Wipperman, J., and Kyle Goerl, Carpal Tunnel Syndrome: Diagnosis and Management. American family physician, 2016. 94(12): p. 993-999.
146. Durkan, J.A., The carpal-compression test. An instrumented device for diagnosing carpal tunnel syndrome. Orthopaedic review, 1994. 23(6): p. 522-525.
147. Kuhlman, K.A., and W J Hennessey, Sensitivity and specificity of carpal tunnel syndrome signs. American journal of physical medicine & rehabilitation, 1997. 76(6).
148. Radecki, P., A gender specific wrist ratio and the likelihood of a median nerve abnormality at the carpal tunnel. American journal of physical medicine & rehabilitation, 1994. 73(3): p. 157-162.
149. Katz, J.N., Larson, M. G., Sabra, A., Krarup, C., Stirrat, C. R., Sethi, R., Eaton, H. M., Fossel, A. H., & Liang, M. H, The carpal tunnel syndrome: diagnostic utility of the history and physical examination findings. Annals of internal medicine, 1990. 112(5): p. 321-327.
150. Katz, J.N., and C R Stirrat, A self-administered hand diagram for the diagnosis of carpal tunnel syndrome. The Journal of hand surgery 1990. 15(2): p. 360-363.
151. MB, B., An electrodiagnostic approach to the evaluation of peripheral neuropathies. Phys Med Rehabil Clin N Am, 2013. 24(1): p. 153-168.
152. Jablecki CK, A.M., So YT, Wilkins DE, Williams FH, Literature review of the usefulness of nerve conduction studies and electromyography for the evaluation of patients with carpal tunnel syndrome. AAEM Quality Assurance Committee. Muscle Nerve, 1993. 16(12): p. 1392-1414.
153. Clinic, M. Electromyography. 2019; Available from: https://www.mayoclinic.org/tests-procedures/emg/about/pac-20393913.
154. Haig AJ, T.H., LeBreck DB, The value of electro diagnostic consultation for patients with upper extremity nerve complaints: a prospective comparison with the history and physical examination. Arch Phys Med Rehabil, 1999. 80(10): p. 1273-1281.
155. Jablecki, C.K., Andary, M. T., Floeter, M. K., Miller, R. G., Quartly, C. A., Vennix, M. J., Wilson, J. R, Practice parameter: Electrodiagnostic studies in carpal tunnel syndrome. Report of the American Association of Electrodiagnostic Medicine, American Academy of Neurology, and the American Academy of Physical Medicine and Rehabilitation. Neurology, 2002. 58(11): p. 1582-1592.
156. Bodofsky EB, W.K., Campellone JV, Greenberg WM, Tomaio AC, A sensitive new median-ulnar technique for diagnosing mild Carpal Tunnel Syndrome. Electromyogr Clin Neurophysiol, 2005. 45(3): p. 139-144.
157. Yap J, K.H., Patel M, et al. Carpal tunnel syndrome. Radiopedia.org 2010; Available from: https://radiopaedia.org/articles/12632.
158. Keles I, K.K.A., Aydin G, Zog SG, Orkun S, Diagnostic precision of ultrasonography in patients with carpal tunnel syndrome. Am J Phys Med Rehabil, 2005. 84(6): p. 443-450.
159. Koyuncuoglu HR, K.S., Yesildag A, Oyar O, Guler K, Ozden A, The value of ultrasonographic measurement in carpal tunnel syndrome in patients with negative electro diagnostic tests. Eur J Radiol, 2005. 56(3): p. 365-369.
160. Copeland, J., & Byerly, D. W, Wrist Imaging, in StatPearls[Internet]. 2023, StatPearls Publishing: Treasure Island (FL).
161. Tai TW, W.C., Su FC, Chern TC, Jou IM, Ultrasonography for diagnosing carpal tunnel syndrome: a metaanalysis of diagnostic test accuracy. Ultrasound Med Biol, 2012. 38(7): p. 1121-1128.
162. Fowler JR, H.D., Kruse K, The reliability of ultrasound measurements of the median nerve at the carpal tunnel inlet. J Hand Surg Am, 2015. 40(10): p. 1992-1995.
163. Megalaa, B.S., et al., Role of ultrasound and magnetic resonance neurography in the detection of median nerve abnormalities in carpal tunnel syndrome. Egyptian Journal of Radiology and Nuclear Medicine, 2024.
164. Kumari A, S.S., Garg A, Prakash A, Sural S, Tingling hand: magnetic resonance imaging of median nerve pathologies within the carpal tunnel. Pol J Radiol, 2019. 84: p. 484-490.
165. Park J, W.H., Oh J, Kim D, Hwang S, Yoo J, Value of Cross-Sectional Area of Median Nerve by MRI in Carpal Tunnel Syndrome. Asian Journal of Surgery, 2020. 43(6): p. 654-659.
166. Ng, A.G., James & Tong, Cina & Law, Eric & Tse, Wing & Wong, Clara & Ho, P, MRI criteria for diagnosis and predicting severity of carpal tunnel syndrome. Skeletal Radiology, 2019. 49: p. 1-9.
167. Dong Q, J.J., Jamadar DA, Gandikota G, Brandon C, Morag Y, Fessell DP, Kim SM, Entrapment neuropathies in the upper and lower limbs: anatomy and MRI features. Radiol Res Pract, 2012.
168. Chodick G, K.K., Shwarz M, Horev G, Shalev V, Ron E, Radiation risks from pediatric computed tomography scanning. Pediatr Endocrinol Rev, 2009. 7(2): p. 29-36.
169. Young, D.W., What does an MRI scan cost? 2015. 69(11): p. 46-49.
170. Ng, A.W.H., Griffith, J. F., Fung, C. S. Y., Lee, R. K. L., Tong, C. S. L., Wong, C. W. Y., Tse, W. L., & Ho, P. C, MR imaging of the traumatic triangular fibrocartilaginous complex tear. Quantitative imaging in medicine and surgery, 2017. 7(4): p. 443-460.
171. Enders J, Z.E., Rief M, Martus P, Klingebiel R, Asbach P, Klessen C, Diederichs G, Bengner T, Teichgräber U, Hamm B, Dewey M, Reduction of claustrophobia during magnetic resonance imaging: methods and design of the "CLAUSTRO" randomized controlled trial. BMC Med Imaging, 2011. 11(4).
172. Spina, V., Barbuti, D., Gaeta, A., Palmucci, S., Soscia, E., Grimaldi, M., Leone, A., Manara, R., & Polonara, G, The role of imaging in the skeletal involvement of mucopolysaccharidoses. Italian journal of pediatrics, 2018. 44(118).
173. McGrath, M.H., Local steroid therapy in the hand. The Journal of hand surgery 1984. 9(6): p. 915-921.
174. Finsen V, Z.H., Carpal tunnel syndrome during pregnancy. Scand J Plast Reconstr Surg Hand Surg, 2006. 40(1): p. 41-45.
175. Turgut F, C.a.M., Turgut M, Bölükbaşi O, The management of carpal tunnel syndrome in pregnancy. J Clin Neurosci, 2001. 8(4): p. 332-334.
176. O'Connor, D., Marshall, S., & Massy-Westropp, N., Non-surgical treatment (other than steroid injection) for carpal tunnel syndrome. The Cochrane database of systematic reviews, 2003. 1.
177. Piazzini, D.B., Aprile, I., Ferrara, P. E., Bertolini, C., Tonali, P., Maggi, L., Rabini, A., Piantelli, S., & Padua, L, A systematic review of conservative treatment of carpal tunnel syndrome. Clinical rehabilitation, 2007. 21(4): p. 299-314.
178. Huisstede BM, H.P., Randsdorp MS, Glerum S, van Middelknoop M, Koes BW, Carpal Tunnel Syndrome. Part I: Effectiveness of Nonsurgical Treatments–A Systematic Review. Archives of physical medicine and rehabilitation, 2010. 91(7): p. 981-1004.
179. Page, M.J., Massy-Westropp, N., O'Connor, D., & Pitt, V, Splinting for carpal tunnel syndrome. The Cochrane database of systematic reviews, 2012. 7.
180. CA, B., A prospective, nonrandomized study of iontophoresis, wrist splinting, and antiinflammatory medication in the treatment of early-mild carpal tunnel syndrome. J Occup Med, 1994. 36(2): p. 166-168.
181. Clinic, M. Diagnosis & Treatment. Carpal Tunnel Syndrome 2024; Available from: https://www.mayoclinic.org/diseases-conditions/carpal-tunnel-syndrome/diagnosis-treatment/drc-20355608.
182. Burke DT, B.M., Stewart GW, Cambré A, Splinting for carpal tunnel syndrome: in search of the optimal angle. Arch Phys Med Rehabil, 1994. 75(11): p. 1241-1244.
183. Marshall S, T.G., Ashworth N, Local corticosteroid injection for carpal tunnel syndrome. Cochrane Database Syst Rev, 2007(2).
184. Meys, V., Thissen, S., Rozeman, S., & Beekman, R, Prognostic factors in carpal tunnel syndrome treated with a corticosteroid injection. Muscle & nerve, 2011. 44(5): p. 763-768.
185. Atroshi I, F.M., Hofer M, Ranstam J, Methylprednisolone injections for the carpal tunnel syndrome: a randomized, placebo-controlled trial. Ann Intern Med, 2013. 159(5): p. 309-317.
186. DP, G., Diagnostic and therapeutic value of carpal tunnel injection. J Hand Surg [Am], 1984. 9(6): p. 850-854.
187. Chen, P.C., Wang, L. Y., Pong, Y. P., Hsin, Y. J., Liaw, M. Y., & Chiang, C. W. , Effectiveness of ultrasound-guided vs direct approach corticosteroid injections for carpal tunnel syndrome: A double-blind randomized controlled trial. Journal of rehabilitation medicine, 2018. 50(2): p. 200-208.
188. ]. Lee JY, P.Y., Park KD, Lee JK, Lim OK, Effectiveness of ultrasound-guided carpal tunnel injection using in-plane ulnar approach: a prospective, randomized, single-blinded study. Medicine (Baltimore), 2014. 93(29).
189. Gottlieb NL, R.W., Complications of local corticosteroid injections. JAMA, 1980. 243(15): p. 1547-1548.
190. Racasan O, D.T., The safest location for steroid injection in the treatment of carpal tunnel syndrome. J Hand Surg [Br], 2005. 30(4): p. 412-414.
191. Adindu E, R.S., Azarpey A, Ring D, Teunis T, Steroid versus placebo injections and wrist splints in patients with carpal tunnel syndrome: a systematic review and network meta-analysis. Journal of Hand Surgery (European Volume), 2024. 49(10): p. 1209-1217.
192. Chan PYW, S.A., Alter T, Shiffer M, Kalahasti S, Katt BM, Long-term Efficacy of Corticosteroid Injection for Carpal Tunnel Syndrome: A Systematic Review. Hand (N Y), 2024.
193. OrthoInfo. Carpal Tunnel Syndrome. Available from: https://orthoinfo.aaos.org/en/diseases--conditions/carpal-tunnel-syndrome/.
194. Ashworth, N.L. Medical Treatment. Carpal Tunnel Syndrome Treatment & Management 2024; Available from: https://emedicine.medscape.com/article/327330-treatment#d10?&icd=login_success_email_match_fpf.
195. Graham, B., Peljovich, A. E., Afra, R., Cho, M. S., Gray, R., Stephenson, J., Gurman, A., MacDermid, J., Mlady, G., Patel, A. T., Rempel, D., Rozental, T. D., Salajegheh, M. K., Keith, M. W., Jevsevar, D. S., Shea, K. G., Bozic, K. J., Adams, J., Evans, J. M., Lubahn, J., … Sevarino, K, The American Academy of Orthopaedic Surgeons Evidence-Based Clinical Practice Guideline on: Management of Carpal Tunnel Syndrome. The Journal of bone and joint surgery American volume, 2016. 98(20): p. 1750-1754.
196. Page MJ, O.C.D., Pitt V, Massy-Westropp N, Therapeutic ultrasound for carpal tunnel syndrome. Cochrane Database Syst Rev, 2013. 3.
197. Page MJ, O.C.D., Pitt V, Massy-Westropp N, Exercise and mobilisation interventions for carpal tunnel syndrome. Cochrane Database Syst Rev, 2012. 6.
198. Garfinkel MS, S.A., Katz WA, Allan DA, Reshetar R, Schumacher HR Jr, Yoga-based intervention for carpal tunnel syndrome: a randomized trial. JAMA, 1998. 280(18): p. 1601-1603.
199. Incebiyik, S., Boyaci, A., & Tutoglu, A, Short-term effectiveness of short-wave diathermy treatment on pain, clinical symptoms, and hand function in patients with mild or moderate idiopathic carpal tunnel syndrome. Journal of back and musculoskeletal rehabilitation, 2015. 28(2): p. 221-228.
200. Carpal Tunnel Syndrome: Physical Therapy or Surgery? J Orthop Sports Phys Ther, 2017. 47(3).
201. Vasiliadis HS, G.P., Shrier I, Salanti G, Scholten RJ, Endoscopic release for carpal tunnel syndrome. Cochrane Database Syst Rev, 2014. 1.
202. Harris CM, T.E., Goldstein MN, Pettee DS, The surgical treatment of the carpal-tunnel syndrome correlated with preoperative nerveconduction studies. J Bone Joint Surg Am, 1979. 61(1): p. 93-98.
203. Mooar PA, D.W., Murray JN, Pezold R, Sevarino KS, Management of Carpal Tunnel Syndrome. J Am Acad Orthop Surg, 2018. 26(6): p. 128-130.
204. Jarvik JG, C.B., Kliot M, Turner JA, Chan L, Heagerty PJ, Hollingworth W, Kerrigan CL, Deyo RA, Surgery versus non-surgical therapy for carpal tunnel syndrome: a randomised parallel-group trial. Lancet, 2009. 374(9695): p. 1074-1081.
205. Scholten RJ, M.v.d.M.A., Uitdehaag BM, Bouter LM, de Vet HC, Surgical treatment options for carpal tunnel syndrome. Cochrane Database Syst Rev, 2007. 4.
206. Boya H, Ö.Ö., Özteki N HH, Long-term complications of open carpal tunnel release. Muscle & nerve, 2008. 38(5): p. 1443-1446.
207. PC, A., The first carpal tunnel release? J Hand Surg [Br], 1995. 20(1): p. 40-41.
208. Taleisnik, J., The palmar cutaneous branch of the median nerve and the approach to the carpal tunnel. An anatomical study. The Journal of bone and joint surgery. American volume, 1973. 55(6): p. 1212-1217.
209. Badger SA, O.D.M., Sherigar JM, Connolly P, Spence RAJ, Open Carpal Tunnel Release – still a safe and effective operation. Ulster Med J 2008. 77(1): p. 21-23.
210. Seiler JG, r., Barnes K, Gelberman RH, Chalidapong P, Endoscopic carpal tunnel release: an anatomic study of the two-incision method in human cadavers. J Hand Surg [Am], 1992. 17(6): p. 996-1002.
211. Mirza MA, K.E., Jr., Tanveer S, Palmar uniportal extrabursal endoscopic carpal tunnel release. Arthroscopy, 1995. 11(1): p. 82-90.
212. Katz JN, F.K., Simmons BP, Swartz RA, Fossel AH, Koris MJ, Symptoms, functional status, and neuromuscular impairment following carpal tunnel release. J Hand Surg [Am], 1995. 20(4): p. 549-555.
213. Jimenez DF, G.S., Clapper AT, Endoscopic treatment of carpal tunnel syndrome: a critical review. J Neurosurg, 1998. 88(5): p. 817-826.
214. Ly-Pen, D., Andréu, J. L., de Blas, G., Sánchez-Olaso, A., & Millán, I, Surgical decompression versus local steroid injection in carpal tunnel syndrome: a one-year, prospective, randomized, open, controlled clinical trial. Arthritis and rheumatism. 2005. 52(2): p. 612-619.
215. Okutsu I, N.S., Takatori Y, Ugawa Y, Endoscopic management of carpal tunnel syndrome. Arthroscopy, 1989. 5(1): p. 11-18.
216. Agee JM, M.H., Jr., Tortosa RD, Berry DA, Szabo RM, Peimer CA, Endoscopic release of the carpal tunnel: a randomized prospective multicenter study. J Hand Surg [Am], 1992. 17(6): p. 987-995.
217. JC, C., Endoscopic release of the carpal ligament: a new technique for carpal tunnel syndrome. Arthroscopy, 1989. 5(1): p. 19-24.
218. Thoma A, V.K., Haines T, Duku E, A systematic review of reviews comparing the effectiveness of endoscopic and open carpal tunnel decompression. Plast Reconstr Surg, 2004. 113(4): p. 1184-1191.
219. Cao J, J.T., Lao J, Liu A and Rui J, Evaluation of different physical examination methods for the diagnosis of carpal tunnel syndrome. World Acad Sci J 2022. 4.
220. Rosario NB, D.J.O., Electrodiagnostic Evaluation of Carpal Tunnel Syndrome. StatPearls [Internet]. 2024, Treasure Island (FL): StatPearls Publishing.
221. Wipperman J, G.K., Carpal Tunnel Syndrome: Diagnosis and Management. Am Fam Physician, 2016. 94(12): p. 993-999.
222. Rajapandian R, M.W.S., Aledani EM, Samuel EA, Ahmad K, Manongi NJ, Rauf Butt S, Endoscopic Versus Open Carpal Tunnel Release: A Systematic Review of Outcomes and Complications. Cureus, 2024. 16(7).
223. O'Connor D, P.M., Marshall SC, Massy-Westropp N, Ergonomic positioning or equipment for treating carpal tunnel syndrome. Cochrane Database Syst Rev, 2012. 1(1).
224. Mogk JP, K.P., Wrist and carpal tunnel size and shape measurements: effects of posture. Clin Biomech (Bristol), 2008. 23(9): p. 1112-1120.
225. Gabra JN, K.D., Li ZM, Elliptical Morphology of the Carpal Tunnel Cross Section. Eur J Anat, 2015. 19(1): p. 49-56.
226. Pacek CA, T.J., Goitz RJ, Kaufmann RA, Li ZM, Morphological analysis of the carpal tunnel Hand (N Y), 2010. 5(1): p. 77-81.
227. Chen PY, Y.T., Kuo LC, Hsu HY, Su FC, Huang CC, Evaluation of Hand Tendon Elastic Properties During Rehabilitation Through High-Frequency Ultrasound Shear Elastography. IEEE Trans Ultrason Ferroelectr Freq Control, 2021. 68(8): p. 2716-2726.
228. Shrewsbury MM, K.K., Flexor digitorum superficialis tendon in the fingers of the human hand. Hand, 1974. 6(2): p. 121-133.
229. Levent ÖZÇAKAR, H.E., I. Karabulut, and A. Akıncı. Sonographic Assessment of Finger Flexor Tendons in Olympic Archers. 2012.
230. Lapegue F, A.A., Brun C, Bakouche S, Chiavassa H, Sans N, Faruch M, Traumatic flexor tendon injuries. Diagn Interv Imaging, 2015. 96(12): p. 1279-1292.
231. Yao B, G.K., Lee A, Roll SC, Comparing Shape Categorization to Circularity Measurement in the Evaluation of Median Nerve Compression Using Sonography. J Diagn Med Sonogr 2020. 2010.
232. Lee S, C.H., Yoo JS, Kim YU, The prognostic value of median nerve thickness in diagnosing carpal tunnel syndrome using magnetic resonance imaging: a pilot study. Korean J Pain, 2020. 33(1): p. 54-59.
233. Ortiz R, W.R., Langhammer CG, Knaus WJ, Chen NC, Eberlin KR, Nerve Diameter in the Hand: A Cadaveric Study. Plast Reconstr Surg Glob Open, 2019. 7(3).
234. Mani B, S.R., Cherian RA, Review of the dimensions of the median nerve and carpal tunnel using sonography in asymptomatic adults. J Med Imaging Radiat Oncol, 2011. 55(2): p. 126-131.
235. Roll SC, T.S., Yao B, Kysh L, Mack WJ, Sonographic reference values for median nerve cross-sectional area: A meta-analysis of data from healthy individuals. J Diagn Med Sonogr, 2023. 39(5): p. 492-506.
236. Marquardt TL, G.J., Evans PJ, Seitz WH Jr, Li ZM, Thickness and Stiffness Adaptations of the Transverse Carpal Ligament Associated with Carpal Tunnel Syndrome. J Musculoskelet Res, 2016. 19(4).
237. Clinic, M. Carpal Tunnel Anatomy. Available from: https://www.mayoclinic.org/diseases-conditions/wrist-pain/multimedia/carpal-tunnel-anatomy/img-20007899.
238. Stepwards. Carpal Tunnel Syndrome. Available from: https://www.stepwards.com/?page_id=1595.
239. Stuff, A. Carpal Tunnel Syndrome. Available from: https://free-resources.anatomystuff.co.uk/carpal-tunnel-syndrome/.
240. Su, L.雷., Jie-Chao & (刘少宝), Shaobao & (李振兴), Zhenxing & (马驰原), Chiyuan, Wettability effect on hydraulic permeability of brain white matter. Acta Mechanica Sinica, 2024. 40: p. 1-15.
241. Yan L, E.A., Zhang Z, Zhong J, Liang J, Li Q, Qi J, An experimental and numerical study of the microstructural and biomechanical properties of human peripheral nerve endoneurium for the design of tissue scaffolds. Front Bioeng Biotechnol, 2022. 10.
242. Foundation, I.I. Tissue Properties. Available from: https://itis.swiss/virtual-population/tissue-properties/database/density/.
243. Chen CT, M.D., Vanderby R Jr, A fiber matrix model for interstitial fluid flow and permeability in ligaments and tendons. Biorheology, 1998. 35(2): p. 103-118.
244. Xu Y, Z.J., Zheng YH, Han Y, Zhang ZG, Xi C, Computational synovial dynamics of a normal temporomandibular joint during jaw opening. J Formos Med Assoc, 2013. 112(6): p. 346-351.
245. Safa BN, B.E., Lee AH, Santare MH, Elliott DM, Evaluation of transverse poroelastic mechanics of tendon using osmotic loading and biphasic mixture finite element modeling. J Biomech, 2020. 109.
246. Osamura N, Z.C., Zobitz ME, An KN, Amadio PC Permeability of the subsynovial connective tissue in the human carpal tunnel: a cadaver study. Clin Biomech (Bristol), 2007. 22(5): p. 524-528.
247. Ma Z, H.S., Tan JS, Myer C, Njus NM, Xia Z, In vitro and in vivo mechanical properties of human ulnar and median nerves. J Biomed Mater Res A, 2013. 101(9): p. 2718-2725.
248. Liu G, Z.Q., Jin Y, Gao Z, Stress and strain analysis on the anastomosis site sutured with either epineurial or perineurial sutures after simulation of sciatic nerve injury. Neural Regen Res, 2012. 15(7): p. 2299-2304.
249. Sarabi, M.R., et al., Finger-Actuated Microneedle Array for Sampling Body Fluids. Applied Sciences, 2021.
250. Bonet, J.M., H. & Hassan, Stability and comparison of different linear tetrahedral formulations for nearly incompressible explicit dynamic applications. International Journal for Numerical Methods in Engineering, 2001. 50: p. 119-133.
251. curiosityFluids. Establishing Grid Convergence. Available from: https://curiosityfluids.com/2016/09/09/establishing-grid-convergence/.
252. Skie, M., Zeiss, J., Ebraheim, N. A., & Jackson, W. T, Carpal tunnel changes and median nerve compression during wrist flexion and extension seen by magnetic resonance imaging. The Journal of hand surgery, 1990. 15(6): p. 934-939.
253. Yoshioka, S., Okuda, Y., Tamai, K., Hirasawa, Y., & Koda, Y, Changes in carpal tunnel shape during wrist joint motion. MRI evaluation of normal volunteers. Journal of hand surgery (Edinburgh, Scotland), 1993. 18(5): p. 620-623.
254. Keir, P.J., Wells, R. P., Ranney, D. A., & Lavery, W, The effects of tendon load and posture on carpal tunnel pressure. The Journal of hand surgery, 1997. 22(4): p. 628-634.
255. McGorry, R.W., Fallentin, N., Andersen, J. H., Keir, P. J., Hansen, T. B., Pransky, G., & Lin, J. H, Effect of grip type, wrist motion, and resistance level on pressures within the carpal tunnel of normal wrists. Journal of orthopaedic research : official publication of the Orthopaedic Research Society, 2014. 32(4): p. 524-530.
256. Lundborg G, M.R., Powell H Nerve compression injury and increased endoneurial fluid pressure: a "miniature compartment syndrome". J Neurol Neurosurg Psychiatry, 1983. 46(12): p. 1119-1124.
257. Gelberman RH, H.P., Hargens AR, Lundborg GN, Akeson WH, The carpal tunnel syndrome. A study of carpal canal pressures. J Bone Joint Surg Am, 1981. 63(3): p. 380-383.
258. Rojviroj, S., Sirichativapee, W., Kowsuwon, W., Wongwiwattananon, J., Tamnanthong, N., & Jeeravipoolvarn, P, Pressures in the carpal tunnel. A comparison between patients with carpal tunnel syndrome and normal subjects. . The Journal of bone and joint surgery. British volume, 1990. 72(3): p. 516-518.
259. Rydevik, B., Lundborg, G., & Bagge, U, Effects of graded compression on intraneural blood blow. An in vivo study on rabbit tibial nerve. The Journal of hand surgery, 1981. 6(1): p. 3-12.
260. Butler SL, K.S., Thielke RJ, Chen C, Vanderby R Jr, Interstitial fluid flow in tendons or ligaments: a porous medium finite element simulation. Med Biol Eng Comput, 1997. 35(6): p. 742-746.
261. CHEN, C., MCCABE, IL F. and VKNDERBY, R, Two electrokinetic phenomena in rabbit patellar tendon: Pressure and voltage, in ASM~ Bioengineering Conference. 1995. p. 31-32.
262. Smith, E.M., Sonstegard, D. A., & Anderson, W. H., Jr Carpal tunnel syndrome: contribution of flexor tendons. Archives of physical medicine and rehabilitation, 1977. 58(9): p. 379-385.
263. Bower, J.A., Stanisz, G. J., & Keir, P. J, An MRI evaluation of carpal tunnel dimensions in healthy wrists: Implications for carpal tunnel syndrome. Clinical biomechanics (Bristol, Avon), 2006. 21(8): p. 816-825.
264. Horch, R.E., Allmann, K. H., Laubenberger, J., Langer, M., & Stark, G. B, Median nerve compression can be detected by magnetic resonance imaging of the carpal tunnel. Neurosurgery, 1997. 41(1): p. 76-83.
265. Tanaka, S., Wild, D. K., Seligman, P. J., Halperin, W. E., Behrens, V. J., & Putz-Anderson, V. (1995). Tanaka, S., Wild, D. K., Seligman, P. J., Halperin, W. E., Behrens, V. J., & Putz-Anderson, V, Prevalence and work-relatedness of self-reported carpal tunnel syndrome among U.S. workers: analysis of the Occupational Health Supplement data of 1988 National Health Interview Survey. American journal of industrial medicine, 1995. 27(4).
266. Armstrong, T.J., and D B Chaffin, Some biomechanical aspects of the carpal tunnel. Journal of biomechanics 1979. 12(7): p. 567-570.
267. TANZER, R.C., The carpal-tunnel syndrome; a clinical and anatomical study. The Journal of bone and joint surgery, 1959. 41: p. 626-634.
268. Bauman TD, G.R., Mubarak SJ, Garfin SR, The acute carpal tunnel syndrome. Clin Orthop Relat Res, 1981. 156: p. 151-156.
269. Werner, C.O., Elmqvist, D., & Ohlin, P, Pressure and nerve lesion in the carpal tunnel. Acta orthopaedica Scandinavica, 1983. 54(2): p. 312-316.
270. Okutsu I, N.S., Hamanaka I, Kuroshima N, Inanami H, Measurement of pressure in the carpal canal before and after endoscopic management of carpal tunnel syndrome. J Bone Joint Surg Am, 1989. 71(5): p. 679-683.
271. Aranceta-Garza, A., and Karyn Ross, A comparative study of the efficacy and functionality of 10 commercially available wrist-hand orthoses in healthy females during activities of daily living. Frontiers in rehabilitation sciences, 2022. 3(1017354).
272. RC, T., The carpal-tunnel syndrome; a clinical and anatomical study. J Bone Joint Surg Am, 1959. 41(4): p. 626-634.
273. Cobb, T.K., An, K. N., & Cooney, W. P, Effect of lumbrical muscle incursion within the carpal tunnel on carpal tunnel pressure: a cadaveric study. The Journal of hand surgery, 1995. 20(2): p. 186-192.
274. Dean Chou, Y.-D.L., Zartasha Mustansar, Chen-Yuan Chung, Using a poroelastodynamic model to investigate the dynamic behaviour of articular cartilage. Computer Methods and Programs in Biomedicine, 2023. 233(107481).
275. Oflaz, H.G., I, Maximum Loading of Carpal Bones during Movements: A Finite Element Study. Eur. J. Orthop. Surg. Traumatol, 2019. 29: p. 47-50.
276. Wei, Y.Z., Z.; Wei, G.; Ren, L.; Qian, Z, Subject-Specific Finite Element Modelling of the Human Hand Complex: Muscle-Driven Simulations and Experimental Validation. Ann. Biomed. Eng, 2020. 48: p. 1181-1195.
277. Marqués, R.M., J.; Sánchez-Montesinos, I.; Roda, O.; Rus, G.; Hernández-Cortés, P, Biomechanical Finite Element Method Model of the Proximal Carpal Row and Experimental Validation. Front. Physiol, 2022. 12(2429).