| 研究生: |
陳靚蓉 Chen, Jing-Rong |
|---|---|
| 論文名稱: |
以單顆粒感應耦合電漿質譜儀結合前處理與奈米金標記來檢測魚體中的奈米塑膠 Using Single-Particle ICP-MS Combining with Pretreatment and Post-Au Nanoparticle Labeling to Detect Nanoplastics in Fish Samples |
| 指導教授: |
侯文哲
Hou, Wen-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 奈米塑膠 、單顆粒感應耦合電漿質譜儀 、金標記 |
| 外文關鍵詞: | nanoplastic, spICP-MS, Au-labeling |
| 相關次數: | 點閱:86 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米塑膠 (NP) ,一種被定義為粒徑小於 1 微米的塑膠碎片,隨著 NP 的存在被證實, NP 對環境及生物的可能危害也日漸受到關注。評估此類新興污染物的生物暴露和相關影響將取決於檢測及量化的分析方法,然而,檢測及量化複雜生物基質中的 NP 是一項具有挑戰性的任務。在本篇研究中我們使用金奈米顆粒 (AuNP) 對 NP 進行標記,以利用單顆粒感應耦合電漿質譜儀 (spICP-MS) 進行NP顆粒數計數。此外,我們研發從魚肉萃取 NP 的消化方法,並評估其對 AuNP 後標記NP的影響,開發可與 AuNP 後標記 NP 方法相容的魚樣本萃取消化程序,以使用 spICP-MS 對魚肉樣本中的 NP 進行量化計數。研究為初步結果顯示苯乙烯奈米塑膠顆粒(PSNP)數目濃度為 4.62 × 1012 #/L 時,該方法在水中回收率 99.29 ± 3.71% 。而此方法在應用於較低 PSNP 數目濃度標記時,需調整金前驅物及還原劑添加濃度,以避免過多的游離 AuNPs 產生或造成標記不均等干擾檢測的問題。而現階段發現蛋白酶搭配雙氧水的雙重消化程序,可有效消解魚肉且不干擾標記程序,而目前此消化程序及標記方法可從魚肉樣本回收 94.29 ± 48.98% 的 PSNPs 。
Nanoplastics (NPs) are plastic fragments with particle sizes smaller than 1 μm. Their presence in the environment has prompted great concerns regarding their potential hazards and accumulation in biota. The availability of analytical methods to detect and quantify NPs in complex environmental and biological matrices significantly affects our ability to assess the ecological exposure and impacts of this emerging class of pollutants. However, detecting and quantifying NPs in complex biological matrices is a challenging task. In this study, we first developed a method to label NPs with gold nanoparticles (AuNPs) to enable NP counting using single-particle inductively coupled plasma mass spectrometry (spICP-MS). We explored various fish tissue digestion methods to extract NPs from fish tissue and evaluate their impacts on the AuNP post-labeling of extracted NPs for counting by spICP-MS. Preliminary results demonstrated that the recoveries of polystyrene nanoparticles (PSNPs) at a concentration of 4.62 × 1012 #/L from water were 99.29 ± 3.71%. Furthermore, when the method was applied to lower PSNP concentrations, adjustments in the concentration of gold precursors and reductants were required to prevent excessive generation of free AuNPs or uneven attachment of AuNPs on PSNPs during the labeling process. It was discovered that a dual digestion process using proteinase K and hydrogen peroxide effectively digested fish tissue without interfering with the labeling process. Currently, this digestion process and labeling method could recover 94.29 ± 48.98% of PSNPs from fish tissue samples.
1. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci Adv 3, e1700782 (2017).
2. Lambert, S. & Wagner, M. Formation of microscopic particles during the degradation of different polymers. Chemosphere 161, 510–517 (2016).
3. Efimova, I., Bagaeva, M., Bagaev, A., Kileso, A. & Chubarenko, I. P. Secondary Microplastics Generation in the Sea Swash Zone With Coarse Bottom Sediments: Laboratory Experiments. Frontiers in Marine Science 5, (2018).
4. González-Pleiter, M. et al. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ. Sci.: Nano 6, 1382–1392 (2019).
5. Jiang, B. et al. Health impacts of environmental contamination of micro- and nanoplastics: a review. Environ Health Prev Med 25, 29 (2020).
6. Gaylarde, C. C., Baptista Neto, J. A. & da Fonseca, E. M. Nanoplastics in aquatic systems - are they more hazardous than microplastics? Environmental Pollution 272, 115950 (2021).
7. Cai, H. et al. Analysis of environmental nanoplastics: Progress and challenges. Chemical Engineering Journal 410, 128208 (2021).
8. Velimirovic, M., Tirez, K., Voorspoels, S. & Vanhaecke, F. Recent developments in mass spectrometry for the characterization of micro- and nanoscale plastic debris in the environment. Anal Bioanal Chem 413, 7–15 (2021).
9. Montaño, M. D., Olesik, J. W., Barber, A. G., Challis, K. & Ranville, J. F. Single Particle ICP-MS: Advances toward routine analysis of nanomaterials. Anal Bioanal Chem 408, 5053–5074 (2016).
10. Pace, H. E. et al. Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 83, 9361–9369 (2011).
11. Bolea-Fernandez, E., Rua-Ibarz, A., Velimirovic, M., Tirez, K. & Vanhaecke, F. Detection of microplastics using inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-event mode. J. Anal. At. Spectrom. 35, 455–460 (2020).
12. Laborda, F., Trujillo, C. & Lobinski, R. Analysis of microplastics in consumer products by single particle-inductively coupled plasma mass spectrometry using the carbon-13 isotope. Talanta 221, 121486 (2021).
13. Marigliano, L., Grassl, B., Szpunar, J., Reynaud, S. & Jiménez-Lamana, J. Nanoplastic Labelling with Metal Probes: Analytical Strategies for Their Sensitive Detection and Quantification by ICP Mass Spectrometry. Molecules 26, 7093 (2021).
14. Mitrano, D. M. et al. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nat. Nanotechnol. 14, 362–368 (2019).
15. Jiménez-Lamana, J. et al. A Novel Strategy for the Detection and Quantification of Nanoplastics by Single Particle Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Anal. Chem. 92, 11664–11672 (2020).
16. Lai, Y. et al. Counting Nanoplastics in Environmental Waters by Single Particle Inductively Coupled Plasma Mass Spectroscopy after Cloud-Point Extraction and In Situ Labeling of Gold Nanoparticles. Environ. Sci. Technol. 55, 4783–4791 (2021).
17. L. Lusher, A., A. Welden, N., Sobral, P. & Cole, M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Analytical Methods 9, 1346–1360 (2017).
18. Valsesia, A. et al. Combining microcavity size selection with Raman microscopy for the characterization of Nanoplastics in complex matrices. Sci Rep 11, 362 (2021).
19. Li, P., He, C. & Lin, D. Extraction and quantification of polystyrene nanoplastics from biological samples. Environmental Pollution 314, 120267 (2022).
20. Zhou, P. et al. The abundance, composition and sources of marine debris in coastal seawaters or beaches around the northern South China Sea (China). Marine Pollution Bulletin 62, 1998–2007 (2011).
21. Kik, K., Bukowska, B. & Sicińska, P. Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environmental Pollution 262, 114297 (2020).
22. Desforges, J.-P. W., Galbraith, M., Dangerfield, N. & Ross, P. S. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Marine Pollution Bulletin 79, 94–99 (2014).
23. Dowarah, K., Patchaiyappan, A., Thirunavukkarasu, C., Jayakumar, S. & Devipriya, S. P. Quantification of microplastics using Nile Red in two bivalve species Perna viridis and Meretrix meretrix from three estuaries in Pondicherry, India and microplastic uptake by local communities through bivalve diet. Marine Pollution Bulletin 153, 110982 (2020).
24. Ita-Nagy, D., Vázquez-Rowe, I. & Kahhat, R. Prevalence of microplastics in the ocean in Latin America and the Caribbean. Journal of Hazardous Materials Advances 5, 100037 (2022).
25. Gigault, J. et al. Current opinion: What is a nanoplastic? Environmental Pollution 235, 1030–1034 (2018).
26. Hartmann, N. B. et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 53, 1039–1047 (2019).
27. Carr, S. A., Liu, J. & Tesoro, A. G. Transport and fate of microplastic particles in wastewater treatment plants. Water Research 91, 174–182 (2016).
28. Duis, K. & Coors, A. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe 28, 2 (2016).
29. Hale, R. C., Seeley, M. E., La Guardia, M. J., Mai, L. & Zeng, E. Y. A Global Perspective on Microplastics. Journal of Geophysical Research: Oceans 125, e2018JC014719 (2020).
30. Hernandez, E., Nowack, B. & Mitrano, D. M. Polyester Textiles as a Source of Microplastics from Households: A Mechanistic Study to Understand Microfiber Release During Washing. Environ. Sci. Technol. 51, 7036–7046 (2017).
31. Kole, P. J., Löhr, A. J., Van Belleghem, F. G. A. J. & Ragas, A. M. J. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. International Journal of Environmental Research and Public Health 14, 1265 (2017).
32. Carpenter, E. J. & Smith, K. L. Plastics on the Sargasso Sea Surface. Science 175, 1240–1241 (1972).
33. Colton, J. B., Burns, B. R. & Knapp, F. D. Plastic Particles in Surface Waters of the Northwestern Atlantic. Science 185, 491–497 (1974).
34. Hays, H. & Cormons, G. Plastic particles found in tern pellets, on coastal beaches and at factory sites. Marine Pollution Bulletin 5, 44–46 (1974).
35. Ter Halle, A. et al. Nanoplastic in the North Atlantic Subtropical Gyre. Environ. Sci. Technol. 51, 13689–13697 (2017).
36. Eriksen, M. et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull 77, 177–182 (2013).
37. Xu, B. et al. Microplastics in the soil environment: Occurrence, risks, interactions and fate – A review. Critical Reviews in Environmental Science and Technology 50, 2175–2222 (2020).
38. Boyle, K. & Örmeci, B. Microplastics and Nanoplastics in the Freshwater and Terrestrial Environment: A Review. Water 12, 2633 (2020).
39. Allen, S. et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12, 339–344 (2019).
40. Jamieson, A. J. et al. Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth. Royal Society Open Science 6, 180667 (2019).
41. Tirelli, V., Suaria, G. & Lusher, A. L. Microplastics in Polar Samples. in Handbook of Microplastics in the Environment (eds. Rocha-Santos, T., Costa, M. F. & Mouneyrac, C.) 281–322 (Springer International Publishing, 2022). doi:10.1007/978-3-030-39041-9_4.
42. Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of The Total Environment 586, 127–141 (2017).
43. Koelmans, A. A. et al. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Research 155, 410–422 (2019).
44. Oßmann, B. E. et al. Small-sized microplastics and pigmented particles in bottled mineral water. Water Research 141, 307–316 (2018).
45. Kutralam-Muniasamy, G., Pérez-Guevara, F., Elizalde-Martínez, I. & Shruti, V. C. Branded milks – Are they immune from microplastics contamination? Science of The Total Environment 714, 136823 (2020).
46. Shruti, V. C., Pérez-Guevara, F., Elizalde-Martínez, I. & Kutralam-Muniasamy, G. First study of its kind on the microplastic contamination of soft drinks, cold tea and energy drinks - Future research and environmental considerations. Science of The Total Environment 726, 138580 (2020).
47. Zhou, X.-X. et al. Quantitative Analysis of Polystyrene and Poly(methyl methacrylate) Nanoplastics in Tissues of Aquatic Animals. Environ. Sci. Technol. 55, 3032–3040 (2021).
48. Liang, H. et al. Release kinetics of microplastics from disposable face masks into the aqueous environment. Science of The Total Environment 816, 151650 (2022).
49. Lai, H., Liu, X. & Qu, M. Nanoplastics and Human Health: Hazard Identification and Biointerface. Nanomaterials 12, 1298 (2022).
50. Ragusa, A. et al. Plasticenta: First evidence of microplastics in human placenta. Environment International 146, 106274 (2021).
51. Leslie, H. A. et al. Discovery and quantification of plastic particle pollution in human blood. Environment International 163, 107199 (2022).
52. Amato-Lourenço, L. F. et al. Presence of airborne microplastics in human lung tissue. Journal of Hazardous Materials 416, 126124 (2021).
53. Revel, M., Châtel, A. & Mouneyrac, C. Micro(nano)plastics: A threat to human health? Current Opinion in Environmental Science & Health 1, 17–23 (2018).
54. Ban, M., Shimoda, R. & Chen, J. Investigation of nanoplastic cytotoxicity using SH-SY5Y human neuroblastoma cells and polystyrene nanoparticles. Toxicology in Vitro 76, 105225 (2021).
55. Wang, W. et al. Polystyrene microplastics induced nephrotoxicity associated with oxidative stress, inflammation, and endoplasmic reticulum stress in juvenile rats. Frontiers in Nutrition 9, (2023).
56. Hu, M. & Palić, D. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox Biology 37, 101620 (2020).
57. Das, A. The emerging role of microplastics in systemic toxicity: Involvement of reactive oxygen species (ROS). Science of The Total Environment 895, 165076 (2023).
58. Wang, F. et al. Sorption Behavior and Mechanisms of Organic Contaminants to Nano and Microplastics. Molecules 25, 1827 (2020).
59. Bhagat, J., Nishimura, N. & Shimada, Y. Toxicological interactions of microplastics/nanoplastics and environmental contaminants: Current knowledge and future perspectives. Journal of Hazardous Materials 405, 123913 (2021).
60. Xin, X. et al. A critical review on the interaction of polymer particles and co-existing contaminants: Adsorption mechanism, exposure factors, effects on plankton species. Journal of Hazardous Materials 445, 130463 (2023).
61. Jin, Y. et al. Secondary pollution of microplastic hetero-aggregates after chlorination: Released contaminants rarely re-adsorbed by the second-formed hetero-aggregates. Journal of Hazardous Materials 445, 130523 (2023).
62. Banaee, M. et al. Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio). Chemosphere 236, 124335 (2019).
63. Cao, J., Liao, Y., Yang, W., Jiang, X. & Li, M. Enhanced microalgal toxicity due to polystyrene nanoplastics and cadmium co-exposure: From the perspective of physiological and metabolomic profiles. Journal of Hazardous Materials 427, 127937 (2022).
64. Yu, Y., Mo, W. Y. & Luukkonen, T. Adsorption behaviour and interaction of organic micropollutants with nano and microplastics – A review. Science of The Total Environment 797, 149140 (2021).
65. Ullah, S. et al. A review of the endocrine disrupting effects of micro and nano plastic and their associated chemicals in mammals. Frontiers in Endocrinology 13, (2023).
66. Pires, A., Cuccaro, A., Sole, M. & Freitas, R. Micro(nano)plastics and plastic additives effects in marine annelids: A literature review. Environmental Research 214, 113642 (2022).
67. Chen, Z. et al. Nanoplastics are significantly different from microplastics in urban waters. Water Research X 19, 100169 (2023).
68. Mandemaker, L. D. B. & Meirer, F. Spectro‐Microscopic Techniques for Studying Nanoplastics in the Environment and in Organisms. Angew Chem Int Ed Engl 62, e202210494 (2023).
69. Vitali, C., Peters, R. J. B., Janssen, H.-G., Nielen, M. W. F. & Ruggeri, F. S. Microplastics and nanoplastics in food, water, and beverages, part II. Methods. TrAC Trends in Analytical Chemistry 157, 116819 (2022).
70. Fu, W., Min, J., Jiang, W., Li, Y. & Zhang, W. Separation, characterization and identification of microplastics and nanoplastics in the environment. Science of The Total Environment 721, 137561 (2020).
71. Mariano, S., Tacconi, S., Fidaleo, M., Rossi, M. & Dini, L. Micro and Nanoplastics Identification: Classic Methods and Innovative Detection Techniques. Frontiers in Toxicology 3, (2021).
72. Jakubowicz, I., Enebro, J. & Yarahmadi, N. Challenges in the search for nanoplastics in the environment—A critical review from the polymer science perspective. Polymer Testing 93, 106953 (2021).
73. Adhikari, S., Kelkar, V., Kumar, R. & Halden, R. U. Methods and challenges in the detection of microplastics and nanoplastics: a mini-review. Polymer International 71, 543–551 (2022).
74. Hendrickson, E., Minor, E. C. & Schreiner, K. Microplastic Abundance and Composition in Western Lake Superior As Determined via Microscopy, Pyr-GC/MS, and FTIR. Environ. Sci. Technol. 52, 1787–1796 (2018).
75. Kirstein, I. V. et al. Drinking plastics? – Quantification and qualification of microplastics in drinking water distribution systems by µFTIR and Py-GCMS. Water Research 188, 116519 (2021).
76. Lu, H.-Y., Wang, Y.-J. & Hou, W.-C. Bioaccumulation and depuration of TiO2 nanoparticles by zebrafish through dietary exposure: Size- and number concentration-resolved analysis using single-particle ICP-MS. Journal of Hazardous Materials 426, 127801 (2022).
77. Yang, J. & Hou, W.-C. Uptake and depuration of Ag nanoparticles versus Ag ions by zebrafish through dietary exposure: characterization of Ag nanoparticle formation and dissolution in vivo and toxicokinetic modeling. Environ. Sci.: Nano 9, 2788–2798 (2022).
78. Hong, Y. et al. Total-organic-carbon-based quantitative estimation of microplastics in sewage. Chemical Engineering Journal 423, 130182 (2021).
79. Yang, T., Luo, J. & Nowack, B. Characterization of Nanoplastics, Fibrils, and Microplastics Released during Washing and Abrasion of Polyester Textiles. Environ. Sci. Technol. 55, 15873–15881 (2021).
80. Gross, J., Sayle, S., Karow, A. R., Bakowsky, U. & Garidel, P. Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: Influence of experimental and data evaluation parameters. European Journal of Pharmaceutics and Biopharmaceutics 104, 30–41 (2016).
81. Catarino, A. I., Frutos, A. & Henry, T. B. Use of fluorescent-labelled nanoplastics (NPs) to demonstrate NP absorption is inconclusive without adequate controls. Science of The Total Environment 670, 915–920 (2019).
82. Meyers, N. et al. Microplastic detection and identification by Nile red staining: Towards a semi-automated, cost- and time-effective technique. Science of The Total Environment 823, 153441 (2022).
83. Gillibert, R. et al. Raman Tweezers for Small Microplastics and Nanoplastics Identification in Seawater. Environ. Sci. Technol. 53, 9003–9013 (2019).
84. Seeley, M. E. & Lynch, J. M. Previous successes and untapped potential of pyrolysis–GC/MS for the analysis of plastic pollution. Anal Bioanal Chem 415, 2873–2890 (2023).
85. Correia, M. & Loeschner, K. Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations. Anal Bioanal Chem 410, 5603–5615 (2018).
86. Laborda, F., Bolea, E. & Jiménez-Lamana, J. Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Anal. Chem. 86, 2270–2278 (2014).
87. Thomas, R. & Stephan, C. Single-Particle ICP-MS: A Key Analytical Technique for Characterizing Nanoparticles. Spectroscopy 32, 12–25 (2017).
88. Clark, N. J., Khan, F. R., Mitrano, D. M., Boyle, D. & Thompson, R. C. Demonstrating the translocation of nanoplastics across the fish intestine using palladium-doped polystyrene in a salmon gut-sac. Environment International 159, 106994 (2022).
89. Abdolahpur Monikh, F. et al. An analytical workflow for dynamic characterization and quantification of metal-bearing nanomaterials in biological matrices. Nat Protoc 17, 1926–1952 (2022).
90. Ateia, M., Ersan, G., Alalm, M. G., Boffito, D. C. & Karanfil, T. Emerging investigator series: microplastic sources, fate, toxicity, detection, and interactions with micropollutants in aquatic ecosystems – a review of reviews†. Environ Sci Process Impacts 24, 172–195 (2022).
91. Dehaut, A. et al. Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environmental Pollution 215, 223–233 (2016).
92. Jiang, X., Tian, L., Ma, Y. & Ji, R. Quantifying the bioaccumulation of nanoplastics and PAHs in the clamworm Perinereis aibuhitensis. Science of The Total Environment 655, 591–597 (2019).
93. Chang, Y.-S. et al. Extraction method development for nanoplastics from oyster and fish tissues. Science of The Total Environment 814, 152675 (2022).
94. Ishida, T., Kuroda, K., Kinoshita, N., Minagawa, W. & Haruta, M. Direct deposition of gold nanoparticles onto polymer beads and glucose oxidation with H2O2. Journal of Colloid and Interface Science 323, 105–111 (2008).
95. Ribeiro, F. et al. Quantitative Analysis of Selected Plastics in High-Commercial-Value Australian Seafood by Pyrolysis Gas Chromatography Mass Spectrometry. Environ. Sci. Technol. 54, 9408–9417 (2020).
96. Lee, S. et al. Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environ. Sci. Technol. 48, 10291–10300 (2014).
校內:2028-08-22公開