簡易檢索 / 詳目顯示

研究生: 陳正偉
Chen, Cheng-Wei
論文名稱: 熱處理對P型矽、矽鍺半導體接面與金屬閘極特性之影響
Effect of Thermal Treatment on Contact Resistance and Metal Gate Characteristic for P-type Si,SiGe Semiconductors
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 89
中文關鍵詞: 金屬矽化物接觸電阻率金屬閘極微波退火
外文關鍵詞: metal silicide, specific contact resistance, metal gate, microwave annealing
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在邏輯元件的發展逼近物理極限的情形下,現有的半導體製程技術或架構已陸續面臨許多問題,傳統製程技術的改良或新材料和製程架構的研發便成為延續摩爾定律的要務,而在眾多製程中,熱處理技術亦有著舉足輕重的地位,因此,本論文著重於研究半導體製程中不可或缺的熱處理過程,並探討其對P型矽鍺化物以及金屬閘極的影響。在本論文中,我們使用了不同的熱處理方式分別對金屬-矽鍺接面及金屬閘極進行退火,並比較其阻值及電性的差異。微波退火及雷射退火因加熱的方式與傳統退火不同,將有機會達到較低的熱預算與較佳的熱均勻性。
    第一部分,在熱處理對P型矽鍺化物的實驗中,我們發現在鎳矽鍺化合物中使用微波及雷射退火都能在較低熱預算下,達到理想的阻值表現,而傳統的快速熱退火製成溫度較高容易引起擴散,導致團聚發生,進一步影響到接面阻值;而在熱處理對鈦矽鍺化合物下,雷射退火能同時保持著低熱預算及理想的阻值,而微波退火因無法將鈦矽鍺化合物轉換成較低阻值的組成相,故無法使阻值進一步降低。第二部分,對TiN/Al;Ti/TiN/HfO2/Si substrate MOS-Cap 進行不同參數的微波及RTA金屬沉積後退火的處理,並分別在物性及電性上做分析比較,同時也比較在不同熱處理條件下,Al:Ti金屬閘極的混和比例對電性及功函數的影響。
    實驗結果顯示,鋁含量較高的試片中,會有較低的平帶電壓。另一方面,不論鋁鈦含量比,經快速熱退火後的電容,會因為金屬的擴散、介面氧化層的增厚導致平帶電壓的偏移。而使用微波退火的樣品中,相較於快速熱退火,得到了較少的平帶電壓偏移、氧化層缺陷電荷以及較小的功函數調變量。
    本論文探討以較低熱預算的退火方式,來達到P型矽鍺化物理想的阻值,另外,於金屬閘極MOS-Cap方面,能減少傳統熱退火可能帶來的負面影響,因此,對於需要低熱預算的前段製程將會有一定的吸引力。

    When the feature size of logic devices is scaling down toward 10 nm and beyond, current manufacturing techniques are facing a variety of challenges due to higher processing requirement. Improvement on current techniques or development of novel technology thus becomes important to keep the Moore’s law alive. Furthermore, thermal process plays an important role in series semiconductor process flows. This thesis focuses on the indispensable thermal process in semiconductor process flow and discusses its effect on P-type silicon-germanium and metal gate.
    In this thesis, we use different annealing treatments on metal / silicon-germanium interface layer and metal gate, thus compare the electrical characteristic, many kinds of crystallinity and surface roughness. Microwave and laser annealing are unlike conventional RTA such as heating mechanism and heating transfer efficiency, which will have the chance to achieve lower thermal budgets and better thermal uniformity.
    In the first part, in the thermal treatment of P-type silicon-germanium experiments, we found that using microwave and laser annealing in nickel / silicon-germanium compounds can achieve a minimum resistance performance at lower thermal budgets, while traditional RTA is easy to cause the diffusion, resulting in the occurrence of compound agglomeration, and further degrade the resistance value. And in the thermal treatment of titanium / silicon-germanium compounds, the laser annealing has the ability to maintain the low thermal budget and the ideal resistance performance, while the microwave annealing isn’t able to convert titanium / silicon-germanium compounds into a lower resistance composition phase by XRD analysis, so that the resistance won’t be further reduced.
    In the second part, the metal deposition TiN / Al / TiN / HfO2 / Si substrate MOS- Capacitance was conducted to different parameters of microwave and RTA, and were analyzed and compared in physical and electrical properties. Thus study the influence of the mixing ratio of Al/Ti metal gate on the electrical properties and effective work function under different thermal treatment conditions.
    The experimental results show that the higher aluminum content samples will have a lower flat-band voltage. On the other hand, regardless of the aluminum and titanium content ratio, the capacitor after the rapid thermal annealing will cause flat voltage shift due to the diffusion of metal and the thicker interface oxide layer. However,compare to RTA result, the microwave annealing samples, resulting in less flat-band voltage shift,oxide trap charge and lead the few variation of the effective work function.
    In this thesis, the lower thermal budget annealing process is used to achieve the ideal resistance performance of P-type silicon-germanium, and will reduce the negative effect of traditional thermal annealing on field of MOS-Capacitance. Therefore, the requirement for low thermal budget annealing at the front-end process will be a certain attraction.

    Content 摘要 II Abstract III 誌謝 V Content VI Figure Caption IX Table Caption XII Chapter 1. Introduction 1 1-1 Background 1 1-1-1 Aggressively scaling of CMOS devices 1 1-1-2 The Impact of The Total Resistance on Dimension Scaling 3 1-1-3 The requirement of high-κ materials 4 1-1-4 The emergence of metal gate 5 1-2 Properties of Metal/Semiconductor Contact 7 1-2-1 Metal silicide 7 1-2-2 Schottky Barrier Height 10 1-2-3 Fermi-level Pinning 10 1-2-4 Specific Contact Resistance 11 1-3 Issues of Metal Gate 13 1-3-1 Metal Work Function 13 1-3-2 The metal diffusion during thermal process 14 1-4 Motivation 14 Chapter 2. Theory 16 2-1 Issues of Silicide&Germanosilicide 16 2-1-1 Titanium Silicide during thermal process 16 2-1-2 Nickel Silicide during thermal process 17 2-2 Aggressively reducing the specific Contact Resistance 19 2-3 Modulation of the Effective Work Function 21 Chapter 3. Experimental Procedure 24 3-1 Fabrication process of Source/Drain contact Structure 24 3-1-1 Clean substrate 24 3-1-2 Silicon-Germanium epitaxy layer 24 3-1-3 deposit metal layer and Lithography 25 3-1-4 Parameters of annealing 27 3-2 Fabrication process of MIS capacitor 28 3-2-1 Clean substrate and grow sacrifical oxide 28 3-2-2 Dielectric deposited 28 3-2-3 Metal gate films deposited 28 3-2-4 Lithography and etching steps 29 3-2-5 Post-metal annealing 29 3-3 Analysis Equipment 31 3-3-1 Four-point probe 31 3-3-2 X-ray Diffraction 32 3-3-3 Atomic force microscope 32 3-3-4 Transmission Line Model 33 3-3-5 I-V measurement 36 Chapter 4 Results and Discussion 37 4-1 The Analysis of Germanosilicide after RTA 37 4-1-1 Variety of Sheet resistance after RTA 37 4-1-2 Study of Germanosilicide phase after RTA 39 4-1-3 Comparison of Roughness after RTA 40 4-1-4 Specific Contact Resistance of the samples annealed by RTA 42 4-2 The Analysis of Germanosilicide after MWA 45 4-2-1 Variety of Sheet resistance after MWA 45 4-2-2 Study of Germanosilicide phase after MWA 47 4-2-3 Comparison of Roughness after MWA 48 4-2-4 Specific Contact Resistance of the samples annealed by MWA 50 4-3 The Analysis of Germanosilicide after LA 52 4-3-1 Variety of Sheet resistance after LA 52 4-3-2 Study of Germanosilicide phase after LA 53 4-3-3 Comparison of Roughness after LA 55 4-3-4 Specific Contact Resistance of the samples annealed by LA 56 Chapter 5 The Analysis of TiN/Ti:Al/TiN/HfO2/Si MOS Capacitors 60 5-1 The sample annealed by RTA 60 5-1-1 Shift of flat band voltage after RTA 60 5-1-2 Study of interface states after RTA 63 5-1-3 Variety of EOT after RTA 67 5-1-4 Modulation of the Effective Work Function after RTA 70 5-2 The sample annealed by MWA 72 5-2-1 Shift of flat band voltage after MWA 72 5-2-2 Study of interface states after MWA 74 5-2-3 Variety of EOT after MWA 75 5-2-4 Modulation of the Effective Work Function after MWA 78 Chapter 6 Conclusion 80 Reference 83

    1. Moore, G.E., Cramming more components onto integrated circuits. Proceedings of the IEEE, 1998. 86(1): p. 82-85.
    2. Song, Y., H. Zhou, and Q. Xu, Source/drain technologies for the scaling of nanoscale CMOS device. Solid State Sciences, 2011. 13(2): p. 294-305.
    3. Skotnicki, T., et al., The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance. IEEE Circuits and Devices Magazine, 2005. 21(1): p. 16-26.
    4. Yu, H., et al. MIS or MS? Source/drain contact scheme evaluation for 7nm Si CMOS technology and beyond. in Junction Technology (IWJT), 2016 16th International Workshop on. 2016. IEEE.
    5. Natarajan, S., et al. A 14nm logic technology featuring 2 nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm 2 SRAM cell size. in Electron Devices Meeting (IEDM), 2014 IEEE International. 2014. IEEE.
    6. Yeric, G. Moore's Law at 50: Are we planning for retirement? in Electron Devices Meeting (IEDM), 2015 IEEE International. 2015. IEEE.
    7. Adusumilli, P., et al. Ti and NiPt/Ti liner silicide contacts for advanced technologies. in VLSI Technology, 2016 IEEE Symposium on. 2016. IEEE.
    8. Ghani, T., et al. Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors. in VLSI Technology, 2000. Digest of Technical Papers. 2000 Symposium on. 2000. IEEE.
    9. Wu, C., et al., HfSiON n-MOSFETs Using Low-Work Function $ hboxHfSi_x $ Gate. IEEE electron device letters, 2006. 27(9): p. 762-764.
    10. Wu, C., et al., HfAlON n-MOSFETs incorporating low-work function gate using ytterbium silicide. IEEE electron device letters, 2006. 27(6): p. 454-456.
    11. Ma, M.-W., et al., Impact of High-$kappa $ Offset Spacer in 65-nm Node SOI Devices. IEEE Electron device letters, 2007. 28(3): p. 238-241.
    12. Schaeffer, J., et al. Challenges for the integration of metal gate electrodes. in Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International. 2004. IEEE.
    13. Gámiz, F., et al., Effect of polysilicon depletion charge on electron mobility in ultrathin oxide MOSFETs. Semiconductor science and technology, 2003. 18(11): p. 927.
    14. Hobbs, C., et al. Fermi level pinning at the polySi/metal oxide interface. in VLSI Technology, 2003. Digest of Technical Papers. 2003 Symposium on. 2003. IEEE.
    15. Saha, S., R. Howell, and M. Hatalis, Silicidation reactions with Co–Ni bilayers for low thermal budget microelectronic applications. Thin Solid Films, 1999. 347(1): p. 278-283.
    16. Zhang, S.-L. and M. Östling, Metal silicides in CMOS technology: Past, present, and future trends. Critical Reviews in Solid State and Materials Sciences, 2003. 28(1): p. 1-129.
    17. Ohguro, T., et al. Nitrogen-doped nickel monosilicide technique for deep submicron CMOS salicide. in Electron Devices Meeting, 1995. IEDM'95., International. 1995. IEEE.
    18. Lavoie, C., et al., Towards implementation of a nickel silicide process for CMOS technologies. Microelectronic Engineering, 2003. 70(2): p. 144-157.
    19. Park, K., et al., A Study on the Thermal Stabilities of the NiGe and Ni1− x Ta x Ge Systems. Journal of The Electrochemical Society, 2007. 154(7): p. H557-H560.
    20. Brunco, D., et al., Observation and suppression of nickel germanide overgrowth on germanium substrates with patterned SiO2 structures. Electrochemical and Solid-State Letters, 2008. 11(2): p. H39-H41.
    21. Bracht, H., Copper related diffusion phenomena in germanium and silicon. Materials science in semiconductor processing, 2004. 7(3): p. 113-124.
    22. Yu, H., et al., Low-resistance titanium contacts and thermally unstable nickel germanide contacts on p-type germanium. IEEE Electron Device Letters, 2016. 37(4): p. 482-485.
    23. Henisch, H., Metal-semiconductor Schottky barrier junctions and their applications. Proceedings of the IEEE, 1986. 74(6): p. 894-894.
    24. Mönch, W., Electronic properties of semiconductor interfaces. Vol. 43. 2013: Springer Science & Business Media.
    25. Bardeen, J., Surface states and rectification at a metal semi-conductor contact. Physical Review, 1947. 71(10): p. 717.
    26. Rhoderick, E., R. Williams, and M.-S. Contacts, Clarendon. 1988, Oxford.
    27. Robertson, J. and R.M. Wallace, High-K materials and metal gates for CMOS applications. Materials Science and Engineering: R: Reports, 2015. 88: p. 1-41.
    28. Choi, C., Thickness and material dependence of capping layers on flatband voltage (V FB) and equivalent oxide thickness (EOT) with high-k gate dielectric/metal gate stack for gate-first process applications. Microelectronic Engineering, 2012. 89: p. 34-36.
    29. Han, K., et al., Modulation of the effective work function of a TiN metal gate for NMOS requisition with Al incorporation. Journal of Semiconductors, 2013. 34(7).
    30. Beyers, R. and R. Sinclair, Metastable phase formation in titanium‐silicon thin films. Journal of Applied Physics, 1985. 57(12): p. 5240-5245.
    31. Wolf, S. and R.N. Tauber, Silicon Processing for the VLSI ERA, 2000. LATTICE PRESS, Volumn, 2000. 1: p. 265-268.
    32. Probst, V., H. Schaber, and P. Lippens, L. Van den hove, and R. De Keersmaecker. Appl. Phys. Lett, 1988. 52: p. 1803.
    33. Iwai, H., T. Ohguro, and S.-i. Ohmi, NiSi salicide technology for scaled CMOS. Microelectronic Engineering, 2002. 60(1): p. 157-169.
    34. Lasky, J.B., et al., Comparison of transformation to low-resistivity phase and agglomeration of TiSi/sub 2/and CoSi/sub 2. IEEE Transactions on Electron Devices, 1991. 38(2): p. 262-269.
    35. DiGregorio, J.F. and R.N. Wall, Small area versus narrow line width effects on the C49 to C54 transformation of TiSi/sub 2. IEEE Transactions on Electron Devices, 2000. 47(2): p. 313-317.
    36. Ma, Z. and L. Allen, Kinetic mechanisms of the C49-to-C54 polymorphic transformation in titanium disilicide thin films: A microstructure-scaled nucleation-mode transition. Physical Review B, 1994. 49(19): p. 13501.
    37. Ma, Z., L. Allen, and D. Allman, Effect of dimension scaling on the nucleation of C54 TiSi2. Thin Solid Films, 1994. 253(1-2): p. 451-455.
    38. Clevenger, L., et al., A comparison of C54-TiSi 2 formation in blanket and submicron gate structures using in situ x-ray diffraction during rapid thermal annealing. Journal of materials research, 1995. 10(9): p. 2355-2359.
    39. Wang, C.-C., et al., Formation of NiSi-Silicided p+ n Shallow Junctions by BF2+ Implantation into/through Silicide and Rapid Thermal Annealing. Japanese journal of applied physics, 2005. 44(1R): p. 108.
    40. Nicolet, M.-A. and S. Lau, VLSI electronics microstructure science. Academic, New York, 1983. 6: p. 329.
    41. Morimoto, T., et al., Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI. IEEE Transactions on Electron Devices, 1995. 42(5): p. 915-922.
    42. Okubo, K., et al., Influence of structural variation of Ni Silicide thin films on electrical property for contact materials. Japanese journal of applied physics, 2004. 43(4S): p. 1896.
    43. Gannavaram, S., N. Pesovic, and C. Ozturk. Low temperature (800/spl deg/C) recessed junction selective silicon-germanium source/drain technology for sub-70 nm CMOS. in Electron Devices Meeting, 2000. IEDM'00. Technical Digest. International. 2000. IEEE.
    44. Ozturk, M., et al. Advanced Si/sub 1-x/Ge x source/drain and contact technologies for sub-70 nm CMOS. in Electron Devices Meeting, 2002. IEDM'02. International. 2002. IEEE.
    45. Ozturk, M., J. Liu, and H. Mo. Low Resistivity Nickel Germanosilicide Contacts to Ultra-Shallow Si~ 1~-~ xGE~ x Source/Drain Junctions for Nanoscale CMOS. in INTERNATIONAL ELECTRON DEVICES MEETING. 2003. IEEE.
    46. Thompson, S., et al. A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1/spl mu/m/sup 2/SRAM cell. in Electron Devices Meeting, 2002. IEDM'02. International. 2002. IEEE.
    47. Gannavaram, S., N. Pesovic, and C. Ozturk. Low temperature (800 degrees C) recessed junction selective silicon-germanium source/drain technology for sub-70 nm CMOS. in International Electron Devices Meeting, Technical Digest.
    48. Tillack, B., et al., Strain compensation in ternary Si1− x− yGexBy films. Journal of crystal growth, 1995. 157(1-4): p. 181-184.
    49. Ku, J.-H., et al. High performance pMOSFETs with Ni (Si/sub x/Ge/sub 1-x/)/poly-Si/sub 0.8/Ge/sub 0.2/gate. in VLSI Technology, 2000. Digest of Technical Papers. 2000 Symposium on. 2000. IEEE.
    50. Liu, J. and M.C. Ozturk, Nickel Germanosilicide contacts formed on heavily boron doped Si/sub 1-x/Ge/sub x/source/drain junctions for nanoscale CMOS. IEEE Transactions on Electron Devices, 2005. 52(7): p. 1535-1540.
    51. Zhang, Z., et al., Ultra low contact resistivities for CMOS beyond 10-nm node. IEEE Electron Device Letters, 2013. 34(6): p. 723-725.
    52. Yasuda, Y., O. Nakatsuka, and S. Zaima, Interfacial reactions of Ti/and Zr/Si 1− x Ge x/Si contacts with rapid thermal annealing. Thin Solid Films, 2000. 373(1): p. 73-78.
    53. Yang, Y., et al. Ultra low p-type SiGe contact resistance FinFETs with Ti silicide liner using cryogenic contact implantation amorphization and Solid-Phase Epitaxial Regrowth (SPER). in VLSI Technology, 2016 IEEE Symposium on. 2016. IEEE.
    54. Yu, H., et al. Ultralow-resistivity CMOS contact scheme with pre-contact amorphization plus Ti (germano-) silicidation. in VLSI Technology, 2016 IEEE Symposium on. 2016. IEEE.
    55. Yu, H., et al., TiSi (Ge) Contacts Formed at Low Temperature Achieving Around $2,, imes,, 10^{-{9}}~Omega $ cm2 Contact Resistivities to p-SiGe. IEEE Transactions on Electron Devices, 2017. 64(2): p. 500-506.
    56. Kadoshima, M., et al., Effective-work-function control by varying the TiN thickness in Poly-Si/TiN gate electrodes for scaled high-$ k $ CMOSFETs. IEEE Electron Device Letters, 2009. 30(5): p. 466-468.
    57. Westlinder, J., G. Sjöblom, and J. Olsson, Variable work function in MOS capacitors utilizing nitrogen-controlled TiN x gate electrodes. Microelectronic Engineering, 2004. 75(4): p. 389-396.
    58. Bai, W., et al., Three-layer laminated metal gate electrodes with tunable work functions for CMOS applications. IEEE electron device letters, 2005. 26(4): p. 231-233.
    59. Hillard, R., et al., Direct and rapid method for determining flatband voltage from non-equilibrium capacitance voltage data. Diagnostic Techniques for Semiconductor Materials and Devices, 1992: p. 261-274.
    60. 韩锴, et al., Modulation of the effective work function of a TiN metal gate for NMOS requisition with Al incorporation. Journal of Semiconductors, 2013. 7: p. 035.
    61. Nicollian, E. and A. Goetzberger, The Si‐SiO2 Interface—Electrical Properties as Determined by the Metal‐Insulator‐Silicon Conductance Technique. Bell System Technical Journal, 1967. 46(6): p. 1055-1133.
    62. Kim, H.K., et al., Gate Engineering in TiN/La/TiN and TiLaN Metal Layers on Atomic-Layer-Deposited $hbox {HfO} _ {2}/hbox {Si} $. IEEE Electron Device Letters, 2012. 33(7): p. 955-957.

    無法下載圖示 校內:2021-12-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE