| 研究生: |
林脩甯 Lin, Shiou-Ning |
|---|---|
| 論文名稱: |
應用於具掃描架構與邏輯矩陣之測試晶片之傳輸延遲錯誤診斷方法 Diagnosing Transition Delay Faults under Scan-Based Logic Array Test chips |
| 指導教授: |
李昆忠
Lee, Kuen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 可製造性設計 、傳輸延遲錯誤 、錯誤診斷 、測試晶片 |
| 外文關鍵詞: | Design for manufacturability, Transition delay fault, Fault diagnosis, Test Chip |
| 相關次數: | 點閱:65 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去,我們實驗室曾經提過一個具有掃描鍊與邏輯陣列的測試晶片架構,同時提出了診斷該架構下存在的靜態錯誤,包括固定型故障錯誤、輸入向量錯誤、橋接錯誤。而在我們這篇論文中,我們會在同樣的架構下去提出一個診斷流程來診斷傳輸延遲錯誤。該流程包括兩個測試方法,而在100MHz的ATE操作下,所需的執行時間在不同規格的測試晶片中僅需不到1秒的時間。在單一錯誤假設下,估算結果顯示該方法具有100%的平均診斷率;而在雙錯誤假設下,估算結果顯示該方法對單錯誤具有89.982%的平均診斷率而對雙錯誤具有99.961%的平均診斷率。而我們的工作除了電路中的傳輸延遲錯誤,也考慮到掃描鏈上的傳輸延遲錯誤。因此錯誤被診斷出來時也能反映出掃描鏈上與時間有關的缺陷。
In the past, our laboratory proposed the scan-based logic array test chip architecture and has proposed a method to diagnose static faults under this architecture, including stuck-at fault (SAF), Input Pattern Fault (IPF), Bridging Fault (BF). In this work, we propose a diagnosis flow on the same architecture to diagnose transition delay fault. The procedure consists of two tests, and the required time for test chips with various specifications is less than 1 second when executing the procedure on 100MHz ATE. Under the single fault assumption, evaluation results show that the proposed procedure can achieve 100% average diagnosability. Under the double fault assumption, it can achieve 89.982% for single faults and 99.961% for double faults. In addition to the TDFs of the circuit, we also consider TDFs in scan chains. Hence the faults diagnosed by the procedure can reflect possible time-related defects in scan chains.
[1] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: Design for Testability, Morgan Kaufmann, 2006.
[2] R. Guo, L. Lai, Y. Huang, and W. T. Cheng, “Detection and Diagnosis of Static Scan Cell Internal Defect,” in Proc. IEEE Int. Test Conf., 2008, pp. 1-10.
[3] K. Wang and S. Y. Kuo, “Fault detection and location in reconfigurable VLSI arrays,” in Proc. IEEE Int. Conf. Comput.-Aided Des. Digest of Technical Papers, 1989, pp. 234-237.
[4] J. C. Lien and M. A. Breuer, “ Maximal Diagnosis for Wiring Networks,” in Proc. Int. Test Conf., 1991, pp. 96.
[5] S. L. Lin, C. H. Wu, and K. J. Lee, “Repairable Cell-Based Chip Design for Simultaneous Yield Enhancement and Fault Diagnosis”, in Proc. IEEE 25th Asian Test Symp., 2016, pp. 25-30.
[6] C. Hess, B. E. Stine, and L. H. Weiland, “Logic Characterization Vehicle to Determine Process Variation Impact on Yield and Performance of Digital Circuits,” in Proc. Int. Conf. on Microelectronic Test Structures, 2002, pp. 189-196.
[7] Y. Huang and W. T. Cheng, “On Designing Two-Dimensional Scan Architecture for Test Chips” in Proc. Int. Symp. on VLSI Design, Automation and Test, 2017, pp. 1-4.
[8] R. D. Blanton, B. Niewenhuis, and C. Taylor, “Logic Characterization Vehicle Design for Maximal Information Extraction for Yield Learning”, in Proc. IEEE Int. Test Conf., 2014, pp. 1-10.
[9] R. D. Blanton, B. Niewenhuis and Z. Liu, “Design Reflection for Optimal Test-Chip Implementation” in Proc. IEEE Int. Test Conf., 2015, pp. 1-10.
[10] L. M. Huisman “Diagnosing Arbitrary Defects in Logic Designs Using Single Location at a Time (SLAT)”, IEEE Trans. on Comput.-Aided Des. Integr. Circuits Syst., vol. 23, no. 1, pp. 91-101, Jan. 2004.
[11] S.-M. Chao, P.-J. Chen, J.-Y. Chen and et al., “Divide and Conquer Diagnosis for Multiple Defects”, in Proc. Int. Test Conf., 2014, pp. 1-8.
[12] X. Yu, and R. D. Blanton, “Diagnosis of Integrated Circuits With Multiple Defects of Arbitrary Characteristics”, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 29, no. 6, pp. 977-987, June 2010.
[13] B. Niewenhuis, S. Mittal and R. D. Blanton, “Multiple-Defect Diagnosis for Logic Characterization Vehicles”, in Proc. IEEE European Test Symp., 2017, pp. 1-6.
[14] Y. H. Chen, C. M. Hsu, and K. J. Lee, “Test Chips with Scan-Based Logic Arrays”, IEEE Trans. on Comput.-Aided Des. Integr. Circuits Syst., vol. 40, no. 4, pp. 790-802, July. 2020.
[15] C. W. Wu and P. R. Cappello, “Easily Testable Iterative Logic Arrays”, IEEE Trans. on Computers, vol. 39, no. 5, pp. 640-652, May 1990.
[16] B. Niewenhuis, B. Ravikumar, and Z. Liu; R. D. Blanton, “Path Delay Test of the Carnegie Mellon Logic Characterization Vehicle”, in Proc. IEEE VLSI Test Symp., 2019, pp. 1-6.
[17] G. L. Smith, “Model for Delay Faults Based upon Paths”, in Proc. IEEE Int. Test Conf., 1985, pp. 342-349.
[18] K. T. Cheng, “Transition Fault Simulation for Sequential Circuits” in Proc. IEEE Int. Test Conf., 1992, pp.723-731.
[19] J. Savir and S. Patil, “Broad-side delay test,” IEEE Trans. on Comput.-Aided Des. Integr. Circuits Syst., vol. 13, no. 8, pp. 1057-1064, Aug. 1994
[20] Z. Liu, R.D. Blanton, “High Defect-Density Yield Learning using Three-Dimensional Logic Test Chips”, in Proc. IEEE Int. Test Conf., 2020, pp. 1-6.