| 研究生: |
周家賢 Zhou, Jia-Xian |
|---|---|
| 論文名稱: |
表徵鈣鈦礦發光二極體內偏壓誘發離子遷移效應 The characterization of bias-induced ionic migrations in perovskite-based light-emitting diode |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 離子遷移 、遲滯 、啟動能 、兩性離子摻雜 、鈣鈦礦發光二極體 |
| 外文關鍵詞: | perovskite-based light-emitting diodes, characterization, activation energy, ion migration, hysteresis |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,鈣鈦礦光伏元件的發展迅速,但此類材料仍舊面臨著許多問題,如有機鈣鈦礦在大氣中會發生水解、其中含有對環境有害的重金屬,如鉛等,上述因子對於鈣鈦礦的發展造成許多阻礙,其中,遲滯現象為另一項影響重大的因素,元件在依不同方向施加偏壓後所表現出的特性不同,造成實際應用上的不便,這項缺陷亟需有效的解決方法。
為解決鈣鈦礦元件中的遲滯現象,首先需要有系統性的量化與了解,基於本實驗室先前的研究,遲滯現象和鈣鈦礦元件中的離子遷移有關,且此情形在加入氯化膽鹼(choline chloride)後會被明顯抑制,確認現象的成因後,本實驗以變溫下的電流遲滯現象、電容-時間以及偏壓-光致發光量測去量化元件中離子遷移的情形,且發現在加入氯化膽鹼後確實能使元件中離子移動的啟動能增加。
In 2016, by using nickel oxide as hole transport layer, we successfully fabricated high efficiency organolead halide perovskite light-emitting diodes with maximum brightness up to 70000 Cd/m2 and current efficiency above 15 Cd/A. Despite high efficiency, severe hysteresis still affects the performance of perovskite LEDs. Previous researches have shown that hysteresis is caused by ion migration inside perovskite devices. In this work, we try to characterize bias-induced ion motion by calculating the activation energy (Ea) of ion migration in perovskite devices.
Furthermore, we incorporate a small amount of choline chloride into perovskite precursor solution as additive in order to suppress hysteresis. As a result, devices with choline chloride doped exhibit nearly hysteresis-free performance. Activation energies of ion migration in doping devices also increase with increasing doping concentration, proving that adding choline chloride can effectively suppress ion migration.
[1] S. R. Forrest, “The road to high efficiency organic light emitting devices”, Org. Electron., 4, 45 (2003)
[2] J. Kido, M. Kimura, K. Nagai, “Multilayer white light-emitting organic electroluminescent device”, Science, 267, 1332 (1995)
[3] M. Pope, H. P. Kallmann, P. Magnante, “Electroluminescence in organic crystals”, J. Chem. Phys., 38, 2042 (1963)
[4] C. W. Tang, S. A. VanSlyke, “Organic electroluminescent diode”, Appl. Phys. Lett., 57, 913 (1987)
[5] J. H. Burroughes, D. D .C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature, 347, 539 (1990)
[6] https://www.nrel.gov/pv/cell-efficiency.html (National Renewable Energy Laboratory, NREL, accessed July 4, 2019 )
[7] J. C. -Frankel, “Newcomer juices up the race to harness sunlight”, Science, 342, 1438 (2013)
[8] Q. Chen. N. De Marco. Y. (Michael) Yang, T.-B. Song, C.-C. Chena, H. Zhao, Z. Hong, H. Zhou, Y, Yang, “Under the spotlight: The organic-inorganic hybrid perovskite for optoelectronic application”, Nano Today, 10, 355(2015)
[9] Y.-H. Kim, H. Cho, T-W. Lee, “Metal halide perovskite light emitters”, PNAS, 113,1694(2016)
[10] C Zuo, H. J. Bolink, H. Han, J. Huang, D. Cahen, L. Ding, “Advance in perovskite solar cell”, Adv. Sci., 3, 1500324(2016)
[11] S. D. Stranks, H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices”, Nat. Nanotechnol., 10, 319(2015)
[12] M. Era, S. Morimoto, T. Tsutsui, S. Saito, “Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4”, Appl. Phys. Lett., 65, 676(1994).
[13] G. Niu, X. Guo, L. Wang, “Review of recent progress in chemical stability of perovskite solar cells”, J. Mater. Chem. A, 3, 8970(2015)
[14] N. -G. Park, “Perovskite solar cells: an emerging photovoltaic technology”, Mater. Today, 18, 65 (2015)
[15] S. Adjokatse, H. -H. Fang, M. A. Loi, “Broadly tunable metal halide perovskites for solid-state light-emission applications”, Mater. Today., 20, 413 (2017)
[16] B. R. Sutherland, E. H. Sargent, “Perovskite photonic sources”, Nat. Photonics., 10, 295 (2016)
[17] K. Chondroudis, D. B. Mitzi, “Electroluminescence from a organic-inorganic perovskite incorporating a quaterthiophene dye within a lead halide perovskite layer”, Chem. Mat., 11, 3028 (1999)
[18] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite”, Nat. Nanotechnol., 9, 687 (2014)
[19] H. Cho, S.-H. Jeong, M.-H. Park, Y. H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T.-W. Lee, “Overcoming the electroluminescence efficiency limitation of perovskite light-emitting diodes”, Science, 350, 1222 (2015)
[20] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, T. C. Wen, “CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cell”, Adv. Mater., 25, 3727 (2013)
[21] Y. -K. Chih, J. -C. Wang, R. -T. Yang, C. -C. Liu, Y. -C. Chang, Y. -S. Fu, W. -C. Lai, P. Chen, T. -C. Wen, Y. -C. Huang, C. -S. Tsao, T. -F. Guo, “NiOx electrode interlayer and CH3NH2/CH3NH3PbBr3 interface treatment to markedly advance hybrid perovskite-based light-emitting diodes”, Adv. Mater., 28, 8687 (2016).
[22] Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, G. Cui, “Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 thin films for Pervoskite solar cells”, Angew. Chem. Int. Ed., 54, 9705 (2015)
[23] X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, J. You, “Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation”, Nat. Commun., 9, 570 (2018)
[24] L. Zhang, X. Yang, Q. Jiang, P. Wang, Z. Yin, X. Zhang, H. Tan, Y. (Michael) Yang, M. Wei, B. R. Sutherla, E. H. Sargent, J. You, “Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes”, Nat. Commun., 8, 15640 (2017)
[25] Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, J. You, “Planar‐Structure Perovskite Solar Cells with Efficiency beyond 21%”, Adv. Mater., 29, 1703852 (2017)
[26] Y. -H. Kim, G. -H. Lee, Y. -T. Kim, C. Wolf, H. J. Yun W. Kwon, C. G. Park, T. -W. Lee, “High efficiency perovskite light-emitting diodes of ligand-engineered colloidal formamidinium lead bromide nanoparticles”, Nano. Energy., 38. 51 (2017)
[27] H J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, W. Zhang, “Anomalous Hysteresis in Perovskite Solar Cells”, J. Phys. Chem. Lett., 5, 1511 (2014)
[28] E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumüller, M. G. Christoforod, M. D. McGehee, “Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells”, Energy Environ. Sci., 7, 3690 (2014)
[29] J. M. Azpiroz, E. Mosconi, J. Bisquertcd, F. D. Angelis, “Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation”, Energy Environ. Sci., 8, 2118 (2015)
[30] Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, J. Huang, “Photovoltaic Switching Mechanism in Lateral Structure Hybrid Perovskite Solar Cells”, Adv. Energy Mater., 5, 1500615 (2015)
[31] H. Cho, C. Wolf, J. S. Kim, H. J. Yun, J. S. Bae, H. Kim, J.-M. Heo, S. Ahn, T -W Lee, “High-Efficiency Solution-Processed Inorganic Metal Halide Perovskite Light-Emitting Diodes”, Adv. Mater., 29, 1700579 (2017)
[32] M. H. Futscher, J. M. Lee, L. McGovern, L. A. Muscarella, T. Wang, M. I. Haider, A. Fakharuddin, L. S.-Mende, B. Ehrler, “Quantification of Ion Migration in CH3NH3PbI3 Perovskite Solar Cells by Transient Capacitance Measurements”, Mater. Horiz., 10, 1039 (2019)
[33] G. Aberle, “Surface passivation of crystalline silicon solar cells: a review”, Prog. Photovoltaics., 8, 473 (2000).
[34] Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, X. Du, “Nanostructure formation and passivation of large-area black silicon for solar cell applications”, Small, 8, 1392 (2012).
[35] Yan, G. Yue, L. Sivec, J. Yang, S. Guha, C. -S. Jiang, “Innovative dual function nc-SiOx : H layer leading to a >16% efficient multi-junction thin-film silicon solar cell”, Appl. Phys. Lett., 99, 113512 (2011).
[36] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells”, Nat. Commun., 5,5784 (2014)
[37] X. Zheng, Bo. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, J. Huang, “Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations”, Nat. Energy., 2, 17102 (2017)
[38] M. A.-Jalebi, Z. A.-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe, J. M. Richter, M. Alsari, E. P. Booker, E. M. Hutter, A. J. Pearson, S. Lilliu, T. J. Savenije, H. Rensmo, G. Divitini, C. Ducati, R. H. Friend, S. D. Stranks, “Maximizing and stabilizing luminescence from halide perovskites with potassium passivation”, Nature, 555,497 (2018)
[39] J. Haruyama, K. Sodeyama, L. Han, Y. Tateyama, “First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers”, J. Am. Chem. Soc., 137,10048 (2015)
[40] S. Game, G. J. Buchsbaum, Y. Zhou, N. P. Padture, A. I. Kingon, “Ions Matter: Description of the Anomalous Electronic Behavior in Methylammonium Lead Halide Perovskite Devices”, Adv. Funct. Mater., 27,1606584 (2017)
[41] J. Xing, Q. Wang, Q. Dong, Y. Yuan, Y. Fanga. J. Huang, “Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals”, Phys. Chem. Chem. Phys., 18, 30484 (2016)
[42] X. Guan, W. Hu, M. A. Haque, N. Wei, Z. Liu, A. Chen, T. Wu, “Light‐Responsive Ion‐Redistribution‐Induced Resistive Switching in Hybrid Perovskite Schottky Junctions”, Adv. Funct. Mater., 28, 1704665 (2018)
[43] Y. Luo, P. Khoram, S, Brittman, Z. Zhu, B. Lai, S. P. Ong, E. C. Garnett, D. P. Fenning, “Direct Observation of Halide Migration and its Effect on the Photoluminescence of Methylammonium Lead Bromide Perovskite Single Crystals”, Adv. Mater., 29, 1703451 (2017)
[44] 沈廷霖(2017),「離子遷移效應於有機鹵化鉛鈣鈦礦發光二極體」,國立成功大學光電科學與工程研究所碩士論文
[45] T. Wu, L. Collins, J Zhang, P. Y. Lin, M. Ahmadi, S. Jesse, B. Hu, “Photoinduced Bulk Polarization and Its Effects on Photovoltaic Actions in Perovskite Solar Cells.”, ACS Nano, 11, 11542 (2017)
[46] H. Khassaf, S. K. Yadavalli, O. S. Game, Y. Zhou, N. P. Padture, A. I. Kingon, “Comprehensive Elucidation of Ion Transport and Its Relation to Hysteresis in Methylammonium Lead Iodide Perovskite Thin Films”, J. Phys. Chem. C., 123, 4029 (2019)
[47] N. O. -Yamamuro, T. Matsuo, H. Suga, “Dielectric study of CH3NH3PbX3 (X = Cl, Br, I)”, J. Phys. Chem. Solids., 53, 953 (1992)
[48] T. Hwang, A. J. Yun, J. Kim, D. Cho, S. Kim, S. Hong, B. Park, ”Electronic Traps and Their Correlations to Perovskite Solar Cell Performance via Compositional and Thermal Annealing Controls”, ACS Appl. Mater. Interfaces., 7, 6907 (2019)
[49] Y. Kima, B. Park, “Understanding charge trapping/detrapping at the zinc oxide (ZnO)/MAPbI3 perovskite interface in the dark and under illumination using a ZnO/perovskite/ZnO test platform”, Nanoscale, 10, 20377 (2018)
[50] A. Zamouche, T. Heiser, A. Mesli, “Investigation of Fast Diffusing Impurities in Silicon by a Transient Ion Drift Method.” Appl. Phys. Lett., 66, 631 (1995)
校內:2024-07-26公開