| 研究生: |
黃宇斌 Huang, Yu-Pin |
|---|---|
| 論文名稱: |
OTT影音串流平台訂閱用戶的滿意度和持續使用意向──以Netflix平台為例 The satisfaction and continuance intention of subscribing OTT video streaming platforms–An example of Netflix |
| 指導教授: |
蔡欣怡
Tsai, Hsin-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 電信管理研究所 Institute of Telecommunications Management |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 科技接受模型 、影音串流平台 、心流 、滿意度 、持續使用意向 |
| 外文關鍵詞: | Technology Acceptance Model, OTT platform, Flow , Satisfaction, Continuance Intention |
| 相關次數: | 點閱:71 下載:28 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討Netflix影音平台的使用者在Netflix禁止共享帳號的新政策下的影音觀看習慣與訂閱方案選擇,並探究何種因素會影響Netflix影音串流平台的使用者滿意度和持續使用意圖,而在目前的OTT使用者的研究中,較少有以心流的三階段模型探討使用者行為意向之研究,此外亦較少有探討OTT使用者知覺風險之相關研究,因此本研究以科技接受模型為基礎,結合心流的三階段模型與資訊系統持續使用模式,對Netflix的資訊品質、系統品質、服務品質、感知易用性、感知有用性、心流體驗、價格認知、知覺風險對使用者滿意度和持續使用意向之影響進行評估。本研究採用問卷調查法,總共收到 352份問卷回覆,扣除受訪者之無效樣本 41 份,有效樣本總數為 301份。本研究結果證實 Netflix的資訊品質和系統品質會正向影響用戶的感知有用性和感知易用性,而服務品質則不具有顯著的影響效果。而在本研究中作為影響心流的主要前提因素的感知易用性和感知有用性等構面,亦證實會對使用者的心流有顯著的正向影響,而使用者的心流亦會對其滿意度有正向影響進而影響其持續使用意向,所以Netflix等影音平台業者可以著重在如何提升用戶觀看的心流體驗方面進行更多的開發與研究,例如提高觀看畫質、增加影片的類型與豐富程度等,以提升用戶的滿意度與持續使用意向。此外,本研究亦證實用戶的知覺風險對於用戶的滿意度具有負向的影響效果,因此Netflix等影音平台業者應思考如何降低用戶的知覺風險,進而提升用戶的滿意度。對於過往的以科技接受模式探討線上影音平台使用者的研究中,本研究提供了一個更完整的研究架構,結合心流的三階段理論模型與資訊系統成功模式的品質變數,從另一個角度探討線上影音平台使用者的滿意度與持續使用意向,期望本研究模型能對後續在此方面的研究者與研究能具有啟發意義與貢獻。
This study primarily examines the viewing and subscription behavior of Netflix users under the Netflix's new policy of prohibiting user sharing accounts. The study also investigates the factors influencing user satisfaction and intention to continue using the Netflix platform. Among the current studies of OTT users, few studies have explored the three-stage model of flow on user behavioral intention. This study confirmed that Netflix's information quality and system quality will positively affect users' perceived usefulness and perceived ease of use, while service quality has no significant impact users' perceived usefulness and perceived ease of use. In this study, research variables such as perceived ease of use and perceived usefulness, which are the main antecedent factors affecting flow, have also been confirmed to have a significant positive impact on the user's flow, and the user's flow will also conduct a positive impact on their satisfaction, which in turn affects their continuance intention. Therefore, OTT companies such as Netflix can focus on how to improve users’ flow experience, such as improving viewing quality and increasing video types and richness in order to improve users’ satisfaction and continuance intention.
In addition, this study also confirms that users' perceived risk has a negative impact on user satisfaction. Therefore, OTT companies such as Netflix should consider how to reduce users' perceived risk and improve users’ satisfaction. Compared with previous studies that used technology acceptance models to explore OTT users’ behavior, this study provides a more complete research framework, combining the three-stage flow model and the quality variables of information system success models, exploring the satisfaction and continuance intention of OTT users from another perspective. We hoped that the proposed model in this study can make the research studies of OTT users' behavior more completed, and can be inspiring and contributing to future researchers and studies in this field.
三立新聞網(2016)。三立與Netflix合作,超過28部戲劇放送全世界。三立新聞網站。取自https://www.setn.com/News.aspx?NewsID=154081
公視新聞網(2018)。雙城故事呈現台北與舊金山人文風情 9月1日起公視首播。
公視新聞網站。取自https://about.pts.org.tw/pr/latestnews/article/3844
吳昱賢(2018)。全面解析Netflix,靠創新滿足消費者需求。電子商務時報。取自 https://www.ectimes.org.tw/2018/05/%E5%85%A8%E9%9D%A2%E8%A7%A3%E6%9E%90netflix%E3%80%80%E9%9D%A0%E5%89%B5%E6%96%B0%E6%BB%BF%E8%B6%B3%E6%B6%88%E8%B2%BB%E8%80%85%E9%9C%80%E6%B1%82/
Netflix(2020). Netflix與台灣公共電視聯手推出返校影集. Netflix. Retrieved from https://about.netflix.com/zh_tw/news/detention-to-land-on-netflix
Media Partners Asia(2021). Taiwan Online Video Consumer Insights & Analytics.
Media Partners Asia. Retrieved from https://media-partners-asia.com/AMPD/Q4_2021 /TAIWAN/PreviewContent.pdf
創市際市場(2021)。Netflix穩佔影音平台龍頭,Disney+上線兩周即收割近兩成付費訂戶。創市際市場網站。取自https://www.ixresearch.com/news/news_12_01_21
魯皓平(2022)。Netflix全球會員流失100萬!串流媒體龍頭正面臨的5個挑戰。遠見雜誌網站。取自https://www.gvm.com.tw/article/92435
文策院(2022)。文策院與Netflix宣布共同合作,深耕臺灣影視內容產業,擴大臺灣作品國際能見度。文化內容策進院網站。取自https://taicca.tw/article/a881ccac
NCC (2023)。2023年通訊傳播市場概況。國家通訊傳播委員會網站。取自 https://www.ncc.gov.tw/chinese/news.aspx?site_content_sn=3734&is_history=0
DataReportal(2023). DIGITAL 2023: TAIWAN. DataReportal. Retrieved from https://datareportal.com/reports/digital-2023-taiwan
Antenna(2023). Netflix 2023 Preview.Antenna. Retrieved from https://www.antenna
.live /post/netflix-2q23-preview
工商時報(2023)。Netflix投資韓國,執行長:對當地是契機。工商時報網站。取自https://www.ctee.com.tw/news/20230622700359-430701
數位時代(2023)。Netflix打寄生帳號超有效,訂戶大增590萬!2個數字揭:大家還是愛Netflix。數位時代網站。取自https://www.bnext.com.tw/article/75657/netflix-password-sharing-brings-new-subscription
Netflix(2023). Update on Sharing. Netflix. Retrieved from https://about.netflix.com/en/news/update-on-sharing-may-us
Netflix(2024). Plans and Pricing. Netflix. Retrieved from https://help.netflix.com/en/node/24926
Netflix(2024). What is Netflix? Netflix. Retrieved from https://help.netflix.com/en/node/412
MIC(2024)。台灣影音觀看行為調查。MIC產業情報研究所網站。取自https://mic.iii.
org.tw/news.apsx?id=679
李有仁、張書勳、林俊成(2011)。影音分享網站使用者意圖之研究。資訊管理學報,18(1),53-75。
蔡義清、江慧貞(2020)。影響隨選串流媒體平台消費使用意願因素與行銷策略之研究。管理資訊計算,9,75-83。
廖信、葉振璧、郭永銘(2022)。OTT影音平台提供訂閱制服務內容之探討。中華印刷科技年報,319-329。
Aboelmaged, M. G. (2018). Predicting the success of Twitter in healthcare: A synthesis of perceived quality, usefulness and flow experience by healthcare professionals. Online Information Review, 42(6), 898-922.
Abreu, J., Almeida, P., Varsori, E., & Fernandes, S. (2017). Interactive television UI: Industry trends and disruptive design approaches. In Proceedings of 6th Iberoamerican Conference on Applications and Usability for Interactive TV (pp. 213-224).
Abreu, J. F., Almeida, P., Velhinho, A., & Varsori, E. (2019). Returning to the TV screen: the potential of content unification in iTV. In Managing Screen Time in an Online Society (pp. 146-171). IGI Global.
Ahn, T., Ryu, S., & Han, I. (2007). The impact of Web quality and playfulness on user acceptance of online retailing. Information & management, 44(3), 263-275.
Anne Wan-Ling Hu, Ing-San Hwang. Measuring the Effects of Consumer Switching Costs on Switching Intention in Taiwan Mo- bile Telecommunication Services[J]. Journal of American of Business, 2006, 9(1): 75-85.
Arthofer, F., Hardarson, A., Kon, M., Lee, E., & Rose, J. (2016). Future of Television. Friends of Canadian Broadcasting.
Ajzen, I., & Fishbein, M. (1975). A Bayesian analysis of attribution processes. Psychological bulletin, 82(2), 261.
Ajzen, I., & Madden, T. J. (1986). Prediction of goal-directed behavior: Attitudes, intentions, and perceived behavioral control. Journal of experimental social psychology, 22(5), 453-474.
Allen, G., Feils, D., & Disbrow, H. (2014). The rise and fall of Netflix: what happened and where will it go from here?. Journal of the International Academy for Case Studies, 20(1), 135.
Alrawad, M., Lutfi, A., Almaiah, M. A., & Elshaer, I. A. (2023). Examining the influence of trust and perceived risk on customers intention to use NFC mobile payment system. Journal of Open Innovation: Technology, Market, and Complexity, 9(2), 100070.
Ashraf, Z. A., & Jaseem, K. (2020). Classical and modern methods in item analysis of test tools. International Journal of Research and Review, 7(5), 397-403.
Au-Yong-Oliveira, M., Marinheiro, M., & Costa Tavares, J. A. (2020). The power of digitalization: The Netflix story. In Trends and Innovations in Information Systems and Technologies: Volume 38 (pp. 590-599). Springer International Publishing.
Baird, I. S., & Thomas, H. (1985). Toward a contingency model of strategic risk taking. Academy of management Review, 10(2), 230-243.
Bandura, A. (1986). The explanatory and predictive scope of self-efficacy theory. Journal of social and clinical psychology, 4(3), 359-373.
Batra, R., & Sinha, I. (2000). Consumer-level factors moderating the success of private label brands. Journal of retailing, 76(2), 175-191.
Bauer, R. A. (1960). Consumer behavior as risk taking. In Proceedings of the 43rd National Conference of the American Marketing Assocation, June 15, 16, 17, Chicago, Illinois, 1960. American Marketing Association.
Beggs, A., & Klemperer, P. (1992). Multi-period competition with switching costs. Econometrica: Journal of the Econometric Society, 651-666.
Bezovski, Z. (2016). The future of the mobile payment as electronic payment system. European Journal of Business and Management, 8(8), 127-132.
Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS quarterly, 351-370.
Bhattacherjee, A., & Barfar, A. (2011). Information technology continuance research: current state and future directions. Asia Pacific journal of information systems, 21(2), 1-18.
Bilgihan, A., Okumus, F., Nusair, K., & Bujisic, M. (2014). Online experiences: flow theory, measuring online customer experience in e-commerce and managerial implications for the lodging industry. Information Technology & Tourism, 14, 49-71.
Blut, M., Frennea, C. M., Mittal, V., & Mothersbaugh, D. L. (2015). How procedural, financial and relational switching costs affect customer satisfaction, repurchase intentions, and repurchase behavior: A meta-analysis. International Journal of Research in Marketing, 32(2), 226-229.
Brailovskaia, J., Schillack, H., & Margraf, J. (2020). Tell me why are you using social media (SM)! Relationship between reasons for use of SM, SM flow, daily stress, depression, anxiety, and addictive SM use–An exploratory investigation of young adults in Germany. Computers in human behavior, 113, 106511.
Burnham TA, Frels J and MahajanV. Consumer Switching Costs: A Typology, Antecedents, and Consequences[J]. Journal of the Academy of Marketing Science, 2003, 31(2): 109-126.
Camilleri, M. A., & Falzon, L. (2021). Understanding motivations to use online streaming services: integrating the technology acceptance model (TAM) and the uses and gratifications theory (UGT). Spanish Journal of Marketing-ESIC, 25(2), 217-238.
Cardozo, R. N. (1965). An experimental study of customer effort, expectation, and satisfaction. Journal of marketing research, 2(3), 244-249.
Cespedes, F. V., & Smith, H. J. (1993). Database marketing: New rules for policy and practice. MIT Sloan Management Review, 34(4), 7.
Cha, M., Kwak, H., Rodriguez, P., Ahn, Y. Y., & Moon, S. (2009). Analyzing the video popularity characteristics of large-scale user generated content systems. IEEE/ACM Transactions on networking, 17(5), 1357-1370.
Chalaby, J. (2023). The streaming industry and the platform economy: An analysis. Media Culture and Society, 46(3), 552-571.
Chan, L. L., & Idris, N. (2017). Validity and reliability of the instrument using exploratory factor analysis and Cronbach’s alpha. International Journal of Academic Research in Business and Social Sciences, 7(10), 400-410.
Chang, Y. P., & Zhu, D. H. (2012). The role of perceived social capital and flow experience in building users’ continuance intention to social networking sites in China. Computers in Human Behavior, 28(3), 995-1001.
Chen, S. H., Chen, Y. J., & Leung, W. C. (2023). Analyzing differences in customer satisfaction on the video streaming platform Netflix. Annals of Management and Organization Research, 4(3), 193-209.
Chen, C. H., Chen, I. F., Tsaur, R. C., & Chui, L. Y. (2023). User behaviors analysis on OTT platform with an integration of technology acceptance model. Quality & Quantity, 57(6), 5673-5691.
Chen, H., Wigand, R. T., & Nilan, M. S. (1999). Optimal experience of web activities. Computers in human behavior, 15(5), 585-608.
Cheng, Y. M. (2020). Quality antecedents and performance outcome of cloud-based hospital information system continuance intention. Journal of Enterprise Information Management, 33(3), 654-683.
Chiu, C. M., Fang, Y. H., Cheng, H. L., & Yen, C. (2013). On online repurchase intentions: Antecedents and the moderating role of switching cost. Human Systems Management, 32(4), 283-296.
Choi, H., & Choi, Y. J. (2016). The impact perceived risk on user's trust and continuance intention in mobile payment systems. Journal of the Korea Institute of Information and Communication Engineering, 20(6), 1096-1102.
Cluley, R. (2018). The construction of marketing measures: The case of viewability.
Marketing Theory, 18(3), 287-305.
Comrey, A. L. (1988). Factor analytic methods of scale development in personality and clinical psychology. Journal of Consulting and Clinical Psychology, 56, 754-761.
Cox, D. F. (1967). Risk taking and information handling in consumer behavior.
Churchill Jr, G. A., & Surprenant, C. (1982). An investigation into the determinants of customer satisfaction. Journal of marketing research, 19(4), 491-504.
Crinon, R., Kokaram, A., & Catania, N. (2015). OTT (Over-the-Top) in 2015. SMPTE Motion Imaging Journal, 124(6), 65-68.
Csikszentmihalyi, Mihaly. (1975). Beyond boredom and anxiety: the experience of play in work and games.
Csikszentmihalyi, Mihaly. (1990). Flow: The Psychology of Optimal Experience." Journal of Leisure Research, 24(1), 93–94.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management science, 35(8), 982-1003.
Davis, F. D., & Venkatesh, V. (1996). A critical assessment of potential measurement biases in the technology acceptance model: three experiments. International journal of human-computer studies, 45(1), 19-45.
DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information systems research, 3(1), 60-95.
DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of management information systems, 19(4), 9-30.
Deng, Z., Lu, Y., Wei, K. K., & Zhang, J. (2010). Understanding customer satisfaction and loyalty: An empirical study of mobile instant messages in China. International journal of information management, 30(4), 289-300.
Deering, B. J., & Jacoby, J. (1972). Risk enhancement and risk reduction as strategies for handling perceived risk. ACR Special Volumes.
Dermawan, R. & Khadafi, D.(2023). The Influence of Price Perceptions and Product Quality on Netflix Customer Satisfaction in Surabaya City. Jurnal Ekonomi dan Bisnis Digital, 2(3), 627-638.
Dinev, T., & Hart, P. (2006). Privacy concerns and levels of information exchange: An empirical investigation of intended e-services use. E-Service, 4(3), 25-60.
Dreheeb, A. E., Basir, N., & Fabil, N. (2016). Impact of system quality on users' satisfaction in continuation of the use of e-learning system. International Journal of e-Education, e-Business, e-Management and e-Learning, 6(1), 13.
Duatibumi, N., & Setyowardhani, H. (2021). Proceedings of International Conference on Management in Emerging Markets (ICMEM) SBM ITB.
Ebrahimi, M. R., & Tootoonkavan, S. (2014). Investigating the effect of perceived service quality, perceived value, brand image, trust, customer satisfaction on repurchase intention and recommendation to other case study: LG company. European Journal of Business and Management, 6(34), 181-186.
Eggert, A. (2006). Intangibility and perceived risk in online environments. Journal of Marketing Management, 22(5-6), 553-572.
Farrell, Jehoshua and Thomas S. Robertson. Dynamic Competition with Switching Costs[J]. Rand Journal of Economics, 1988, 19(1): 123-137.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.
Forsythe, S. M., & Shi, B. (2003). Consumer patronage and risk perceptions in Internet shopping. Journal of Business research, 56(11), 867-875.
Hsu, C. L., & Lu, H. P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & management, 41(7), 853-868.
Hsu, C. L., Wu, C. C., & Chen, M. C. (2013). An empirical analysis of the antecedents of e-satisfaction and e-loyalty: focusing on the role of flow and its antecedents. Information Systems and e-Business Management, 11, 287-311.
Gambarini, G. (2020). A survey on perceived COVID-19 risk in dentistry and the possible use of rapid tests. Journal of Contemporary Dental Practice, 21(7), 718-722.
Gay, L. R. (1992). Educational research competencies for analysis and application. Macmillan, New York.
Garretson, J. A., & Clow, K. E. (1999). The influence of coupon face value on service quality expectations, risk perceptions and purchase intentions in the dental industry. Journal of services marketing, 13(1), 59-72.
Garretson, J. A., Fisher, D., & Burton, S. (2002). Antecedents of private label attitude and national brand promotion attitude: similarities and differences. Journal of retailing, 78(2), 91-99.
Ghalawat, S., Yadav, E., Kumar, M., Kumari, N., Goyal, M., Girdhar, A., & Agarwal, S. (2021). Factors influencing consumer’s choice of streaming over the top (OTT) platforms. Indian Journal of Extension Education, 57(3), 99-101.
Goncharenko, M., Wang, Z. Z., Yang, X. Y., Najma, A. I., & Dong, R. X. (2023). NETFLIX, THE SUCCESS OF A GLOBAL STORYTELLING. Journal of Business and Social Sciences, 2023(29), 1-14.
Gimpel, G. (2015). The future of video platforms: Key questions shaping the TV and video industry. International journal on media management, 17(1), 25-46.
Gorsuch, R. L. (1983). Factor analysis. Hillsdale, NJ: Lawrence Erlbaum.
GROVE, F. U., & AL, T. T. (2013). Federal Communications Commission.
Hausman, A. V., & Siekpe, J. S. (2009). The effect of web interface features on consumer online purchase intentions. Journal of business research, 62(1), 5-13.
Hermawan, B., Basalamah, S., Djamereng, A., & Plyriadi, A. (2017). Effect of service quality and price perception on corporate image, customer satisfaction and customer loyalty among mobile telecommunication services provider.
Hong, Z., & Yi, L. (2012). Research on the influence of perceived risk in consumer on-line purchasing decision. Physics procedia, 24, 1304-1310.
Hooper, M., Moyler, A., & Nicoll, R. (2010). Over The Top TV (OTT TV) delivery platforms review. Paper BCI.
Hsu, C. L., & Lu H. P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & Management, 41, 853-868.
Hsu, C. L., Wu, C. C., & Chen, M. C. (2013). An empirical analysis of the antecedents of e-satisfaction and e-loyalty: focusing on the role of flow and its antecedents. Information Systems and e-Business Management, 11, 287-311.
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
IAB & MRC. (2018). Digital Video Impression Measurement Guidelines.
Ives, B., Olson, M. H., & Baroudi, J. J. (1983). The measurement of user information satisfaction. Communications of the ACM, 26(10), 785-793.
Jain, M. K. (2021). The Rise of OTT Platform: Changing Consumer Preferences. EPRA International Journal of Multidisciplinary Research (IJMR), 7(6), 257-261.
Jackson, S. A., & Eklund, R. C. (2002). Assessing flow in physical activity: The flow state scale–2 and dispositional flow scale–2. Journal of sport and exercise psychology, 24(2), 133-150.
Jiang, P., & Rosenbloom, B. (2005). Customer intention to return online: price perception, attribute‐level performance, and satisfaction unfolding over time. European journal of marketing, 39(1/2), 150-174.
Jin, B., & Gu Suh, Y. (2005). Integrating effect of consumer perception factors in predicting private brand purchase in a Korean discount store context. Journal of consumer marketing, 22(2), 62-71.
Jin, Z., & Lim, C. K. (2021). Structural relationships among service quality, systemic characteristics, customer trust, perceived risk, customer satisfaction and intention of continuous use in mobile payment service. Journal of System and Management Sciences, 11(2), 48-64.
Jobes, D. A., Jacoby, A. M., Cimbolic, P., & Hustead, L. A. T. (1997). Assessment and treatment of suicidal clients in a university counseling center. Journal of counseling psychology, 44(4), 368.
Jones, M. A., Reynolds, K. E. Mothersbaugh, D. A. and Beatty, S. E. The Positive and Negative Effects of Switching Costs on Relational Outcomes[J]. Journal of Service Research, 2007, 9(4): 335-355
Jung, Y., Perez-Mira, B., & Wiley-Patton, S. (2009). Consumer adoption of mobile TV: Examining psychological flow and media content. Computers in Human Behavior, 25(1), 123-129.
Kerin, Roger A., P. Rajan Varadarajan, and Robert A. Peterson. First-Mover Advantage: A Synthesis, Conceptual Framework, and Research Propositions[J]. Journal of Marketing, 1992, 56(4): 33-52
Kerviler, G., Demoulin, N. T., & Zidda, P. (2016). Adoption of in-store mobile payment: Are perceived risk and convenience the only driver?. Journal of Retailing and Consumer Services, 31, 334-344.
Khadafi, D., & Dermawan, R. (2023). The Influence of Price Perceptions and Product Quality on Netflix Customer Satisfaction in Surabaya City. Jurnal Ekonomi dan Bisnis Digital, 2(3), 627-638.
Kim, J., Kim, S., & Nam, C. (2016). Competitive dynamics in the Korean video platform market: Traditional pay TV platforms vs. OTT platforms. Telematics and Informatics, 33(2), 711-721.
Kim, K. K., Prabhakar, B., & Park, S. K. (2009). Trust, perceived risk, and trusting behavior in Internet banking. Asia Pacific Journal of Information Systems, 19(3), 1-23.
Kim, L. H., Qu, H., & Kim, D. J. (2009). A study of perceived risk and risk reduction of purchasing air‐tickets online. Journal of Travel & Tourism Marketing, 26(3), 203-224.
Kim, Y., & Han, H. (2010). Intention to pay conventional-hotel prices at a green hotel–a modification of the theory of planned behavior. Journal of Sustainable Tourism, 18(8), 997-1014.
Kim, D., & Ko, Y. J. (2019). The impact of virtual reality (VR) technology on sport spectators' flow experience and satisfaction. Computers in human behavior, 93, 346-356.
Kim, Y. J., & Kim, B. Y. (2020). The purchase motivations and continuous use intention of online subscription services. International Journal of Management, 11(11).
Kim, Y., Oyunbold, B., & Roh, T. (2024). Capturing OTT users in an emerging market: Insights on quality of OTT service and behavioral intentions through extended technology acceptance model. Journal of Retailing and Consumer Services, 81, 103953.
Klemperer, P. Markets w ith Consumer Switching Costs[J]. Quarterly Journal of Economics, 1987, 102(2): 375-394
Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information systems research, 13(2), 205-223.
Kwak, K. T., Choi, S. K., & Lee, B. G. (2014). SNS flow, SNS self-disclosure and post hoc interpersonal relations change: Focused on Korean Facebook user. Computers in Human Behavior, 31, 294-304.
Laurini, R., & Thompson, D. (1992). Fundamentals of spatial information systems (Vol. 37). Academic press.
Lin, C. H., Zhang, Y., & Zheng, B. (2017). The roles of learning strategies and motivation in online language learning: A structural equation modeling analysis. Computers & Education, 113, 75-85.
Lichtenstein, D. R., Ridgway, N. M., & Netemeyer, R. G. (1993). Price perceptions and consumer shopping behavior: a field study. Journal of marketing research, 30(2), 234-245.
Li, D., & Browne, G. J. (2006). The role of need for cognition and mood in online flow experience. Journal of Computer Information Systems, 46(3), 11-17.
Li, M., Jiang, W., & Li, K. (2016). Recommendation systems in real applications: algorithm and parallel architecture. In Security, Privacy, and Anonymity in Computation, Communication, and Storage: 9th International Conference, SpaCCS 2016, Zhangjiajie, China, November 16-18, 2016, Proceedings 9 (pp. 45-58). Springer International Publishing.
Li, W., Spachos, P., Chignell, M., Leon-Garcia, A., Zucherman, L., & Jiang, J. (2016, January). Impact of technical and content quality on overall experience of OTT video. In 2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC) (pp. 930-935). IEEE.
Lockhart, J. (2014). Using item analysis to evaluate the validity and reliability of an existing online information literacy skills assessment instrument. South African Journal of Libraries and Information Science, 80(2).
Malik, A., Suresh, S., & Sharma, S. (2017). Factors influencing consumers’ attitude towards adoption and continuous use of mobile applications: a conceptual model. Procedia computer science, 122, 106-113.
Matute-Vallejo, J., & Melero-Polo, I. (2019). Understanding online business simulation games: The role of flow experience, perceived enjoyment and personal innovativeness. Australasian Journal of Educational Technology, 35(3).
Maddux, J. E., & Rogers, R. W. (1983). Protection motivation and self-efficacy: A revised theory of fear appeals and attitude change. Journal of experimental social psychology, 19(5), 469-479.
Marshall, G., & Jonker, L.(2010). An introduction to descriptive statistics: A review and practical guide. Radiography, 16(4), e1-e7.
Milne, G. R., Pettinico, G., Hajjat, F. M., & Markos, E. (2017). Information sensitivity typology: Mapping the degree and type of risk consumers perceive in personal data sharing. Journal of Consumer Affairs, 51(1), 133-161.
Monroe, K. B., & Petroshius, S. M. (1981). Buyers' perceptions of price: An update of the evidence. Perspectives in consumer behavior, 3(23), 43-55.
Roberts, C., & Muscarella, V. (2015). Defining Over-The-Top (OTT) Digital Distribution. The Entertainment Merchants Association, 3-4.
Nakamura, J., & Csikszentmihalyi, M. (2002). The concept of flow. Handbook of positive psychology, 89, 105.
Nilssen, Tore. Two Kinds of Consumer Switching Costs[J]. Rand Journal of Economics, 1992, 23(4)
Novak, T. P., & Hoffman, D. L. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. Journal of Marketing, 60, 50–68.
Novak, T. P., & Hoffman, D. L. (1997). Measuring the flow experience among web users. Interval Research Corporation, 31(1), 1-35.
Novak, T. P., & Hoffman, D. L., & Yung, Y. F. (2000). Measuring the customer experience in online environments: A structural modeling approach. Marketing science, 19(1), 22-42.
Olczewski, P. S., & Purwanto, S. (2023). THE INFLUENCE OF BRAND IMAGE, PRODUCT QUALITY, AND PRICE PERCEPTION ON INTENTION TO RESUBSCRIBE TO NETFLIX VIDEO ON DEMAND (VOD) SERVICE IN SURABAYA. International Journal of Multidisciplinary Research and Literature, 2(6), 776-785.
Odunlami, I. B. (2014). Impact of Customer Satisfaction and Customer Retention on Customer Loyalty: A case study of enterprise bank in Oyo. International Journal of Education and Research, 2(9), 427-450.
Oinas-Kukkonen, H. (2000). Balancing the vendor and consumer requirements for electronic shopping systems. Information technology and management, 1, 73-84.
Oktaviani, N. N., Beureukat, B., Melati, M., & Digdowiseiso, K. (2023). The Influence of Service Quality, Ease of Application Use, and Price Perception on User Satisfaction of Netflix Application. Jurnal Syntax Admiration, 4(5), 857-869.
Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of marketing research, 17(4), 460-469.
Ong, A. K. S., Josue, N. L., Urbiztondo, A. M. B., German, J. D., & Espeño, P. R. E. (2023). Evaluation of Consumer Usage Behavior for Interactive Entertainment: A Netflix Case Study. Entertainment Computing, 49, 100627.
Palomba, A. (2022). Building OTT brand loyalty and brand equity: Impact of original series on OTT services. Telematics and Informatics, 66, 101733.
Patterson, P. G., & Spreng, R. A. (1997). Modelling the relationship between perceived value, satisfaction and repurchase intentions in a business-to-business, services context: an empirical examination. International Journal of Service Industry Management, 8(5), 414-434.
Parasuraman, A. (2000). Technology readiness index (TRI): A multiple-item scale to measure readiness to embrace new technologies, Journal of Service Research, 2(4), 307-320.
Park, H. M. (2009). Comparing group means: t-tests and one-way ANOVA using Stata, SAS, R, and SPSS.
Pereira, R., & Tam, C. (2021). Impact of enjoyment on the usage continuance intention of video-on-demand services. Information & Management, 58(7), 103501.
Periaiya, S., & Nandukrishna, A. T. (2024). What drives user stickiness and satisfaction in OTT video streaming platforms? A mixed-method exploration. International Journal of Human–Computer Interaction, 40(9), 2326-2342.
Patch, H. (2018). Which factors influence Generation Z’s content selection in OTT TV?: A Case Study.
Patel, D., Patel, F., & Chauhan, U. (2023). Recommendation Systems: Types, Applications, and Challenges. International Journal of Computing and Digital Systems.
Pitt, M., Chotipanich, S., Issarasak, S., Mulholland, K., & Panupattanapong, P. (2016). An examination of facility management, customer satisfaction and service relationship in the Bangkok healthcare system. Indoor and Built Environment, 25(3), 442-458.
Porter, M. E. (1980). Industry structure and competitive strategy: Keys to profitability. Financial analysts journal, 36(4), 30-41.
Prasanta Gupta, P., Jain, P., Sharma, S., Chand Sharma, K., & Bhakar, R. (2019). Stochastic scheduling of battery energy storage system for large‐scale wind power penetration. The Journal of Engineering, 2019(18), 5028-5032.
Pulakos, E. D., & Schmitt, N. (1983). A longitudinal study of a valence model approach for the prediction of job satisfaction of new employees. Journal of Applied Psychology, 68(2), 307.
Raghuwanshi, S., & Rana, S. (2021). Impact Of Prices And Data Availablity On The Use Of OTT Platform. Turkish Online Journal of Qualitative Inquiry, 12(8).
Ramírez-Correa, P., Rondán-Cataluña, F. J., Arenas-Gaitán, J., & Martín-Velicia, F. (2019). Analysing the acceptation of online games in mobile devices: An application of UTAUT2. Journal of Retailing and Consumer Services, 50, 85-93.
Rehman, Z. U., Baharun, R., & Salleh, N. Z. M. (2020). Antecedents, consequences, and reducers of perceived risk in social media: A systematic literature review and directions for further research. Psychology & Marketing, 37(1), 74-86.
Richardson, P. S., Jain, A. K., & Dick, A. (1996). Household store brand proneness: A framework. Journal of retailing, 72(2), 159-185.
Roca, J. C., Chiu, C. M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of human-computer studies, 64(8), 683-696.
Senecal, S., & Nantel, J. (2004). The influence of online product recommendations on consumers’ online choices. Journal of retailing, 80(2), 159-169.
Sharma, R. A. (2016). The Netflix effect: impacts of the streaming model on television storytelling.
Sherry, J. L. (2004). Flow and media enjoyment. Communication theory, 14(4), 328-347.
Shin, S., & Park, J. (2021). Factors affecting users' satisfaction and dissatisfaction of OTT services in South Korea. Telecommunications Policy, 45(9), 102203.
Sidaty, N. O., Larabi, M. C., & Saadane, A. (2014, December). Influence of video resolution, viewing device and audio quality on perceived multimedia quality for steaming applications. In 2014 5th European Workshop on Visual Information Processing (EUVIP) (pp. 1-6). IEEE.
Singh, O. B. (2015). SPSS: A Research Method for Social Sciences and Management. IUN Journal of Social Sciences 1(2), 41-51
Singh, S., Singh, N., Kalinić, Z., & Liébana-Cabanillas, F. J. (2021). Assessing determinants influencing continued use of live streaming services: An extended perceived value theory of streaming addiction. Expert Systems with Applications, 168, 114241.
Sivamol, S., & Suresh, K. (2019). Personalization Phenom: User-centric Perspectives towards Recommendation Systems in Indian Video Services. SCMS Journal of Indian Management, 16(2), 73-86.
Skadberg, Y. X., & Kimmel, J. R. (2004). Visitors’ flow experience while browsing a Web site: its measurement, contributing factors and consequences. Computers in human behavior, 20(3), 403-422.
Spreng, R. A., MacKenzie, S. B., & Olshavsky, R. W. (1996). A reexamination of the determinants of consumer satisfaction. Journal of marketing, 60(3), 15-32.
Sujata, J., Sohag, S., Tanu, D., Chintan, D., Shubham, P., & Sumit, G. (2015). Impact of over the top (OTT) services on telecom service providers. Indian Journal of Science and Technology, 8(S4), 145-160.
Taylor, S., & Todd, P. (1995). Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. International journal of research in marketing, 12(2), 137-155.
Tsai, H. T., Chien, J. L., & Tsai, M. T. (2014). The influences of system usability and user satisfaction on continued Internet banking services usage intention: empirical evidence from Taiwan. Electronic Commerce Research, 14, 137-169.
Tsiros, M., & Mittal, V. (2000). Regret: A model of its antecedents and consequences in consumer decision making. Journal of consumer Research, 26(4), 401-417.
Ullah, N., Mugahed Al-Rahmi, W., Alzahrani, A. I., Alfarraj, O., & Alblehai, F. M. (2021). Blockchain technology adoption in smart learning environments. Sustainability, 13(4), 1801.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 157-178.
Viswanathan, V., Hollebeek, L. D., Malthouse, E. C., Maslowska, E., Jung Kim, S., & Xie, W. (2017). The dynamics of consumer engagement with mobile technologies. Service Science, 9(1), 36-49.
Wang, Y., Gu, J., Wang, S., & Wang, J. (2019). Understanding consumers’ willingness to use ride-sharing services: The roles of perceived value and perceived risk. Transportation Research Part C: Emerging Technologies, 105, 504-519.
Wayne, M. L. (2018). Netflix, Amazon, and branded television content in subscription video on-demand portals. Media, culture & society, 40(5), 725-741.
Webster, J., Trevino, L. K., & Ryan, L. (1993). The dimensionality and correlates of flow in human-computer interactions. Computers in human behavior, 9(4), 411-426.
Wei, Z. R. (2014). Application of structural equation model and AMOS software. Applied Mechanics and Materials, 687, 1577-1579
Wong, C. B., & Mula, J. M. (2009, January). The moderating effect of switching costs on the customer satisfaction-retention link: retail internet banking service in Hong Kong. In Proceedings of the 11th IBIMA Conference: Innovation and Knowledge Management in Twin Track Economies.
Xie, S., & Yuan, Y. (2021). An Empirical Study on the Impact of Online Travel Consumers' Brand Loyalty: The Mediating Effect of Flow Experience. In E3S Web of Conferences (Vol. 253, p. 03043). EDP Sciences.
Yang, H., Zhang, S., Diao, Z., & Sun, D. (2023). What motivates users to continue using current short video applications? A dual-path examination of flow experience and cognitive lock-in. Telematics and Informatics, 85, 102050.
Yang, Y., Liu, Y., Li, H., & Yu, B. (2015). Understanding perceived risks in mobile payment acceptance. Industrial Management & Data Systems, 115(2), 253-269.
Ye, Q., Luo, Y., Chen, G., Guo, X., Wei, Q., & Tan, S. (2019). Users intention for continuous usage of mobile news apps: The roles of quality, switching costs, and personalization. Journal of Systems Science and Systems Engineering, 28, 91-109.
Yen, J. Y., & Chen, S. C. (2010). Perspectives from the TRAM Model on Adopting e-Learning: An Analysis of the Chain and Franchise Industry in Taiwan. Journal of National Taipei College of Business, 18, 1-37.
Yeole, S. M., Saha, L., & Bhaisare, C. (2022). A study on User Perspective on OTT platform in India. Journal of Positive School Psychology, 6(3), 7351-7364.
Yoon, J. H., & Kim, H. K. (2023). Why do Consumers Continue to Use OTT Services?. Electronic Commerce Research and Applications, 101285.
Yoon, S. Y., & Kim, J. B. (2022, August). A study on user satisfaction and intention to continue use of OTT platform digital content provision service. In 2022 IEEE/ACIS 7th International Conference on Big Data, Cloud Computing, and Data Science (BCD) (pp. 290-296). IEEE.
Yoon, J. H., & Kim, H. K. (2023). Why do consumers continue to use OTT services?. Electronic Commerce Research and Applications, 60, 101285.
Youm, D. (2022). Impact of the User Experience on OTT services on Continuous Use Intention: Mainly focusing on the Use Satisfaction Mediating Effect. Journal of Digital Convergence, 20(5), 513-523.
Yuan, Y., & An, W. (2017). Context, network, and adolescent perceived risk. Social science research, 62, 378-393.
Zhou, T. (2013). The effect of flow experience on user adoption of mobile TV. Behaviour & Information Technology, 32(3), 263-272.
Ziaullah, M., Feng, Y., & Akhter, S. N. (2014). Online retailing: relationship among e-tailing system quality, e-satisfaction, e-trust and customers commitment in China. International Journal of Economics, Commerce and Management, 2(10), 1-17.
Zeithaml, V. A. (2000). Service quality, profitability, and the economic worth of customers: what we know and what we need to learn. Journal of the academy of marketing science, 28, 67-85.
Zviran, M., Glezer, C., & Avni, I. (2006). User satisfaction from commercial web sites: The effect of design and use. Information & management, 43(2), 157-178.