| 研究生: |
郭哲男 Guo, Zhe-Nan |
|---|---|
| 論文名稱: |
在超立方體上當壞一點之情況下要建造最長路徑之所能容忍的最大錯邊個數 1-Vertex-Hamiltonian-Laceability of Hypercubes with Maximal Edge Faults |
| 指導教授: |
謝孫源
Hsieh, Sun-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 17 |
| 中文關鍵詞: | 雙分圖形 、超立方體 、1-vertex-Hamiltonian-laceabile 、圖形理論 、互連式網路 |
| 外文關鍵詞: | hypercubes, bipartite graphs, graph theory, 1-vertex-Hamiltonian-laceable, interconnection networks |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
假設G=(V_0 union V_1)是一個雙分圖,其中V_0和V_1代表的是G中獨立的點集合,且兩者大小相同,而E代表的是G中邊的集合。首先令x和y分別是圖中相異的任意兩點,而w是相異於 x和y的點,則我們若稱此G為”1-vertex-Hamiltonian-laceable ”就必須在 之情況下滿足以下三個性質:
性質一:x和y在同一個點集合中,且w在另一個點集合中
之情況下,x和y之間存在一條最長路徑長度為
(lV_0l+lV_1l-2)。
性質二:x和y在不同的點集合中,且w在任意的一個點集合
中之情況下,x和y之間存在一條最長路徑長度為
(lV_0l+lV_1l-3)。
性質三:x,y和w均在同一個點集合中,此時x和y之間存在
一條最長路徑長度為(lV_0l+lV_1l-4)。
在此篇論文中,我們將主要證明:當lF_el less than n-3時,Q_n - F_e仍然是1-vertex-Hamiltonian-laceable,而F_e代表的是n維超立方體中之錯邊集合。
Suppose that G = (V_0 union V_1,E) is a bipartite graph with two partite sets V_0 and V_1 of
equal size. Let x and y be two arbitrary distinct vertices and let w be another vertex different from x and y. G is said to be 1-vertex-Hamiltonian-laceable if G-w satisfies the following three properties.
P1: There is a (lV_0l + lV_1l - 2)-length path between x and y, where x and y are in the same partite set and w is in the other partite set;
P2: There is a (lV_0l + lV_1l - 3)-length path between x and y, where x and y are in different partite sets and w is in any partite set;
P3: There is a (lV_0l + lV_1l - 4)-length path between x and y, where x,y,w are in the same partite set.
Let Fe be the set of faulty edges of an n-dimensional hypercube Qn. In this paper, we show that Qn - Fe (the graph obtained by deleting all edges of Fe from Qn) remains
1-vertex-Hamiltonian-laceable when lFel less than n-3.
[1] S. G. Akl, Parallel Computation: Models and Methods, Prentice Hall, 1997.
[2] J. C. Bermond, Ed., "Interconnection networks," a special issue of Discrete
Applied Mathematics, vol. 37-38, 1992.
[3] L. Bhuyan and D. P. Agrawal, "Generalised hypercubes and hyperbus structure
for a computer network," IEEE Transactions on Computers, c. 33, pp. 323-333,
1984.
[4] D. F. Hsu, "Interconnection networks and algorithms," a special issue of
Networks, vol. 23, no. 4, 1993.
[5] S. Y. Hsieh, G. H. Chen, and C. W. Ho, "Hamiltonian-laceability of star
graphs," Networks, vol. 36, no. 4, pp. 225-232, 2000.
[6] F. T. Leighton, Introduction to Parallel Algorithms and Architecture:
Arrays Trees Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.
[7] M. Lewinter and W. Widulski, "Hyper-Hamilton laceable and
caterpillar-spannable product graphs," Computer and Mathematics with
Applications, vol. 34, no. 11, pp. 99-104, 1997.
[8] J. H. Park and H. C. Kim, "Fault-hamiltonicity of product graph of path and
cycle," in Proceedings of 9th Annual International Conference (COCOON'03),
LNCS 2697, pp. 319-328, 2003.
[9] G. Simmons, "Almost all n-dimensional retangular lattices are Hamilton
laceable," Congressus Numerantium, vol. 21, pp. 103-108, 1978.
[10] Chang-Hsiung Tsai, Jimmy J.M. Tan, Tyne Liang, and Lih-Hsing Hsu, "Fault-
tolerant Hamiltonian laceability of hypercubes," Information Processing
Letters, vol. 83, no. 6, pp. 301-306, 2002.
[11] D. B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River,
NJ 07458, 2001.
[12] Junming Xu, Topological Structure and Analysis of Interconnection Networks,
Kluwer academic publishers, 2001.