| 研究生: |
林俊年 Lin, Chun-Nien |
|---|---|
| 論文名稱: |
壓電感測式微機電加速度量測系統之研究 The Study of Piezoelectric MEMS Accelerometer System |
| 指導教授: |
羅錦興
Luo, Ching-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 微機電系統、壓電效應、加速度計 |
| 外文關鍵詞: | accelerometer, MEMS, piezoelectric effect |
| 相關次數: | 點閱:104 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
壓電材料由於具有許多機電互轉的性質,所以從十九世紀開始,相關特性與應用的研究一直未曾間斷過。近年來更由於微機電技術的快速發展,加快了微感測器與微機械元件的實現,壓電效應也應廣泛的應用在微機電系統的驅動力或是訊號來源。加上已經十分成熟的半導體製程技術,更是使得系統整合在未來發展趨勢上越來為重要。
本文為研究加速度量測系統以供日後在儀器系統上的各種應用。整個系統主要分為兩個部分-壓電感測器與訊號讀出電路。在讀出電路方面,我們以交換式電容電路設計出壓電電壓的量測系統,可量測到壓電元件因受加速度所造成之應力的感應電壓;而在感測器方面,則以微機電製程技術在晶圓上利用體型與面型微細加工,利用氮化矽當作結構層,在上面沉積電極層與壓電薄膜,製造出具有懸臂樑結構之壓電感測器,利用此懸臂樑受應力作用而產生形變,此一形變將在薄膜的兩側產生感應電壓,此一電訊號即可經量測電路讀出而完成量測。
Abstract
The continuous researches on the properties and applications of the piezoelectric material have been carried out since 19th century. Piezoelectric effect is widely used in the driven force or the signal source because the rapid development in the micro-electromechanical systems (MEMS) technology accelerates the realization of the microsensor and micro mechanical structure.
This paper carries out the research of the acceleration sensing system. The system consists of two major parts-the piezoelectric sensor and the readout circuits. Based on the switched capacitor circuits, the measurement of the induced voltage resulted from the acceleration can be completed. As for the piezoelectric sensor, we use the MEMS process to build a cantilever beam. The cantilever beam uses silicon nitride as material of the structure layer, the ZnO as the material of piezoelectric thin film, and gold as the electrodes, respectively. The cantilever sensor generates deflection because of the acceleration. This results in the induced voltage. The induced voltage could be served as an input signal to the readout circuits.
1. L.M. Roylance, J.A. Angell, “A batch-fabricated silicon accelerometer,” IEEE Trans. Electron Device, vol. ED-26, pp. 1911-1917, Dec. 1979
2. P.W. Barth, F. Pourahmadi, R. Mayer, J. Poydock, K. Peterson, “A monolithic silicon accelerometer with intergral air damping and overrange protection,” Tech. Dig. Solid-State sensor and Actuator Workshop, pp. 35-38, Hilton Head Island, SC, June 1988
3. T. Berther, G.H. Gautschi, J. Kubler, “Capacitive accelerometers for
static and low-frequency measurements,” Sound and Vibration 30 (6),
pp.28-30, 1996.
4. N. Yazdi, F. Ayazi, K. Najafi, “Micromachined inertial sensors,” Proc. IEEE 86 (8), pp. 1640-1659, 1998.
5. D.W. Satchell, J.C. Greenwood, “A thermally-excited silicon accelerometer,” Sensors and Actuators A, vol. 17, pp.241-245, 1989.
6. E. Abbaspour-Sani, R.S. Huang, C.Y. Kwok, “A wide-range linear optical accelerometer,” Sensors and Actuators A, Vol. 49, pp.149-154, 1995.
7. E. Abbaspour-Sani, R.S. Huang, C.Y. Kwok, “A linear electromagnetic accelerometer,” Sensors and Actuators A, vol. 44, pp.103-109, 1994.
8. U.A. Dauderstadt, P.H.S. de Vries, R. Hiratsuka, P.M. Sarro, “Silicon
accelerometer based on thermalpiles,” Sensors and Actuators A, vol. 46/47, pp.201-204, 1995.
9. S.M.Sze, Semiconductor Sensors, Wiley-Interscience, 1994.
10. T.A.Kovacs, Micromachined Transducers Sourcebook, McGraw-Hill, pp. 215-216, 2000.
11. C.H. Yu, C.B. Lan, “System modeling of microaccelerometer using piezoelectric thin films,” Sensors and Actuators A, vol. 88, pp. 176-186, 2001.
12. Yuantao Zhang, Guotong Du, Dali Liu, Xinqiang Wang, Yan Ma,
Jinzhong Wang, Jingzhi Yin, Xiaotian Yang, Xiaoke Hou, Shuren Yang, “Crystal growth of undoped ZnO films on Si substrates under different sputtering conditions,” Journal of Crystal Growth, no. 243, pp. 439-443, 2002.
13. B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, pp. 410-414, 2001.
14. D. Johns, K. Martin, Analog Integrated Circuit Design, John Wiley& Sons Inc. pp 394-403, 1997
15. M.J. Madou, Fundamental of Microfabrication, 2nd edition, CRC Press, 2002.
16. K. Martin, “A Voltage-Controll Switched-Capacitor Relaxation Oscillator,” IEEE Journal of Solid-State Circuits, Vol. SC16, no.4, pp. 412-414, 1981.
17. J.D. Plummer, M.D. Deal, P.B. Griffin, Silicon VLSI Technology, Prentice Hall, 2000.
18. S. Wolf, R.N. Tauber, Silicon Processing for the VLSI Era : Process Technology, Lattice Press;,2nd edition,1999.
19. D.L. DeVoe, A.P. Pisano, “Modeling and Optimal Design of Piezoelectric Cantilever Microactuators,” IEEE Journal of Microelectromechanical systems, Vol. 6, no 3, 1997.
20. D.L. DeVoe, A.P. Pisano, “Surface Micromachined Piezoelectric Accelerometers (PiXLs),” IEEE Journal of Microelectromechanical systems, Vol. 10, no 2, 2001.
21. R.P. Van Kampen, R.F. Woffenbuttel, “Modeling the behavior of Bulk-micromachined Acceleormeters,” Sensors and Actuators A, Vol. 64, pp. 137-150, 1998.
22. B. Boser, R. Howe, “Surface Micromachined Accelerometer,” IEEE Journal of Solid-State Circuits, Vol. 31, no.5, pp. 366-375, 1996.