| 研究生: |
劉廣惟 Liu, Kuang-Wei |
|---|---|
| 論文名稱: |
利用分子束磊晶系統研究氮化鉻奈米島對不同基板上之氮化物半導體其特性與性質 Growth and properties of III-nitride materials on different substrates with CrN nano-island by Molecular Beam Epitaxy |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 共同指導教授: |
林建德
Lam, Kin-Tak |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 分子束磊晶 、三族氮化物 、氮化鎵 、氮化銦奈米柱 、氮化鉻 |
| 外文關鍵詞: | MBE, III-nitride, GaN, InN, CrN |
| 相關次數: | 點閱:55 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討利用分子束磊晶系統成長氮化物半導體(III-nitride semiconductor)時於基板與磊晶層中間插入氮化鉻(CrN)之後對其光電特性之研究。利用掃描式電子顯微鏡(SEM)觀察磊晶層表面與奈米結構的表面型態,利用穿透式電子顯微鏡(TEM)探討氮化鉻對磊晶時缺陷分布以及奈米結構形成機制,並利用光激發螢光發光譜(PL)進行光學性質之分析,且利用HR-XRD確定試片的成長方向以及晶性。
本論文可分為三大部分,首先,探討利用分子束磊晶系統在矽基板上(Silicon substrate)上成長氮化鎵,並且插入氮化鉻來改善氮化鎵之磊晶層品質,由SEM表面分析以及PL光譜的改善,我們可以發現藉由插入氮化鉻,確實對於成長氮化鎵磊晶層有相當大的幫助。
第二部份則是以分子束磊晶系統成長半極性(semi-polar)氮化鎵在m-plane的藍寶石基板上,藉由SEM表面分析、HR-XRD以及低溫PL的分析以及趨勢,我們可以發現,插入氮化鉻之後的半極性氮化鎵表面會變的比較平整,且由PL的趨勢,可以發現由於堆疊錯誤(stacking fault)產生的復合發光,同時會被抑制,且發光強度也會增加十倍。
第三部份則是在矽基板上成長氮化銦的奈米柱,藉由插入不同厚度的氮化鉻,我們發現氮化銦奈米柱的品質、密度以及外型都會有相當大的不同,藉由TEM的分析結果,我們可獲得些許的證據來推論氮化銦奈米柱的成長機制。
This dissertation investigated the microstructure and physical properties of III-nitride semi-conductor materials grown by plasma-assisted molecular beam epitaxy (MBE) with CrN interlayer. The surface morphologies of the samples were analyzed by scanning electron microscopy (SEM). The microstructures of the samples were characterized by transmission electron microscopy (TEM) to examine the formation mechanism of the III-nitride semi-conductor materials. The optical properties of the samples were investigated by combining low-temperature photoluminescence (PL) and temperature dependent-PL. The film quality and growth direction were confirmed by HR-XRD.
The main focus of this dissertation can be dividing into three parts. First, the characteristics of GaN grown on Si substrate with CrN interlayer by MBE system, the surface morphologies and PL spectra of GaN with/without CrN interlayer indicated that the quality of GaN epilayer were improved distinctly, the mechanism of dislocation eliminated was confirmed by TEM result.
The second part, the characteristics of semi-polar GaN grown on m-plane sapphire with CrN interlayer, the morphology and HR-XRD result indicated that the dislocation of semi-polar GaN was reduced by inserted the CrN interlayer, temperature dependent PL spectra showed the transition of stacking fault was eliminated and room-temperature PL spectra intensity was higher than semi-polar GaN without CrN interlayer.
In the third part, the characteristics of InN nanorods grown on Si substrate with CrN interlayer, the InN nanorods density, quality and shape were influenced by various thicknesses of CrN interlayer. As the TEM result, the InN nanorods growth mechanism was speculated.
Key word: MBE, III-nitride, GaN, InN, CrN.
M. E. Lin, S. Strite, and H. Morkoç, in The Encyclopedia of
Advanced Materials,eds. D. Bloor, M. C. Fleming, R. J. Brook, S.
Mahajan, R. W. Cahn, pp. 79-96,Pergamon Press (1994).
S. Nakamura, T. Mukai, and M. Senoh, Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes, Appl. Phys. Lett. 64, 1687 (1994).
S. Nakamura, T. Mukai, and M. Senoh, High-Power GaN P-N
Junction Blue-Light-Emitting Diodes, Jpn. J. Appl. Phys. 30, 1998
(1991).
E. F. Schubert, Light-Emitting Diodes 2nd edition, (Cambridge
University Press, (2006)
S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T.Kozaki, H. Umemoto, M. Sano, and K. Chocho: Appl. Phys. Lett. 72(2) (1998) 211.
史光國, “GaN 藍色發光及雷射二極體之發展現況”, 工業材料, 126, 154 頁 (1997).
廖偉材, “氮化鋁鎵/氮化鎵超晶格原子層磊晶之研究”, 逢甲大學材料科學研究所,碩士論文 (2002).
D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus, Phys. Rev. Lett. 53, 2173 (1984)
K. Okamoto, H. Ohta, S. F. Chichibu, J. Ichihara, and H. takasu, Jpn.J.Appl. Phy. Part 2 46, L187 (2007)
M. C. Schmidt, K.-C. Kim, H. Sato, N. Fellows, H. Masui, S. Nakamura, S. P. DenBaars, and J. S. Speck, Jpn. J. Appl. Phys. Phys, part 2 46, L126 (2007)
P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature (London) 406, L126 (2007)
N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, Appl.Phys. Lett. 86, 111101 (2005)
Martin Friedrich, PH.D., RENSSELAER POLYTECHNIC INSTITUTE, 337, 1229 (2009)
W. H. Lee, S. W. Lee, H. Goto, H. C. Ko, M. W. Cho, T. Yao, Phy. Stat. sol. (c) 3,No. 6, 1388–1391 (2006)
V. Swaminathan and A. T. Macrander, Prentice-Hall, New Jersey, (1991) 138
Sidney Perkowitz, ACADEMIC PRESS New York, (1993) 50
K. Ploog , In Crystal Growth, Properties and Applications. H. C.
Freyhard, ed., Berlin: Springer-Verlag, Vol. 3, p. 73 (1980).
A. Y. Cho, Thin Solid Films, 10, 291 (1983).
A. C. Gossard, In Treatise on Material Science and Technology, Preparation and Properties of Thin Films . K. N. Tu and R.Rosenberg,
eds., New York: Academic Press, 24, p. 13 (1982).
L. L. Chang and K. Ploog, Molecular Beam Epitaxy and
Heterostructures, Boston: Martinus Nijhoff Publisher. (1985)
E. H. C. Parker, ed. The Technology and Physics of Molecular Beam
Epitaxy. New York: Plenum Publishing Corp. (1986).
G. J. Davies and D. Williams, In The Technology and Physics of
Molecular Beam Epitaxy, E. H. C. Parker, ed., Boston: Plenum
Publishing Corp., 2, 15 (1986).
C. T. Foxon and J. J. Harris, eds. Molecular Beam Epitaxy.Amsterdam: North Holland (1987).
C. T. Foxon and B. A. Joyce, Growth and Characterization of
Semiconductors. R. A. Stradling and P. C. Klipstein, eds., New York:
Adam Hilger, p. 35 (1990).
Y.N. Guo, J. Zou, M. Paladugu, H. Wang, Q. Gao, H.H. Tan,
C. Jagadish, Appl. Phys. Lett. 89 (2006) 231917.
許廣元, “分子束磊晶成長三族氮化物奈米結構與物理性質之研
究”, 國立成功大學,博士論文(2010).
R.K. Watts, Vossen and W. Kern, Academic, New York, (1978) 131-174
C.Y. Chang and S.M. Sze, ULSI technology, 380
J.L. Vossen, J.J. Cuomo, Thin Film Processes, (1978) 24
S.I. Shah, Handbook of Thin Film Process Technology P.A 3.0.1
S.M. Sze, VLSI Technology, 387
P. Ruterana, M. Albrecht and J. Neugebauer, Nitride Semiconductors : handbook on materials and devices, Wiley-VCH, (2003)
B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars and J. S. Speck, Appl. Phys. Lett., 68, 643 (1996)
M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, D. H. Lim and A. Yoshikawa, Appl. Phys. Lett., 77, 2557 (2000)
Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou and D. J. Smith, Appl. Phys. Lett., 86, 043108 (2005)
T. Gu¨hne, Z. Bougrioua, S. Lau¨ t, M. Nemoz, P. Venne´gue`s,
B. Vinter, M. Leroux, Phys. Rev. B 77, 075308 (2008)
Y. J. Wang, R. X. Wang, G. Q. Li, and S. J. Xu, J. Appl. Phys. 106,
013514(2009).
M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond,J. Massies, P. Gibard, J. Appl. Phys. 86, 3721 (1999)
E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennèguès, H. Lahrèche, M. Leroux, and P. Gibart: Appl. Phys. Lett. 79(2001) 3230
S.Nakamura : Jpn. J. Appl. Phys. 30 (1991) L17095
H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda: Appl. Phy. Lett. 48 (5) (1986) 353
S. Tomiya, K. Funato, T. Asatsuma, T. Hino, S.kijima,T .Asano, and M. Ikeda: Appl. Phys. Lett. 77 (2000) 636
C.W. Zou, H.J. Wang, M. Li, C.S. Liu, L.P. Guo, D.J. Fu, Vacuum 83 (2009) 1086.
T. V. Cuong, H. S. Cheong, H. G. Kim, C. –H. Hong, E. K. Suh, H. K. Cho, and B. H. Kong: Appl. Phys. Lett. 90(2007) 131107 (2007).
W. Li, A. Z. Li, M. Oi, Y. G. Zhang, Z. B. Zhao, Q. K. Yang: MAT SCI ENG B-SOLID,B75(2000) 224–227
Jörg Neugebauer, Chris G. Van de Walle, Appl. Phys. Lett. 69 (1996) 503
E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennèguès, H. Lahrèche, M. Leroux, and P. Gibart, Appl. Phys. Lett. 79, 3230 (2001).
Bernardini F, Fiorentini V, and Vanderbilt D. Phys. Rev. B 56, R10024-R10027 (1997)
K. Okamoto, H. Ohta, S. F. Chichibu, J. Ichihara, and H. takasu, Jpn.J.Appl. Phy. Part 2 46, L187 (2007)
M. C. Schmidt, K.-C. Kim, H. Sato, N. Fellows, H. Masui, S. Nakamura, S. P. DenBaars, and J. S. Speck, Jpn. J. Appl. Phys. Phys, part 2 46, L126 (2007)
P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature (London) 406, L126 (2007)
N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, Appl.Phys. Lett. 86, 111101 (2005)
Tory J. BAKER , Benjamin A. HASKELL, Feng WU, James S. SPECK and Shuji NAKAMURA, Jpn. J. Appl. Phys. 45, 6, L154-L157 (2006)
R.Sharma, P. M. Pattison, and H. Masui, R. M. Farrell, T.J. Baker, B.A. Haskell, F. Wu, S.P. DenBaars, J. S. Speck, J. Appl. Phys. 94,942 (2003).
B.Heying, R. Averbeck, L. F. Chen, E. Haus, H. Riechert and J. S. Speck, J.Appl. Phy. 88 1855 (2000).
X. Ni, Ü. Özgür, A. A. Baski, and H. Morkoc, Appl. Phys. Lett. 90, 182109 (2007)
W. H. Lee, S. W. Lee, H. Goto, H. C. Ko, M. W. Cho, T. Yao, Phy. Stat. sol. (c) 3,No. 6, 1388–1391 (2006)
R. Armitage, M. Horita, J. Suda, T. Kimito, J. Appl. Phys. 101, 033534 (2007)
Wookhyun Lee, Seogwoo Lee, Hiroki Goto, Hyunchul Ko, Meoungwhan Cho, and Takafumi Yao, phys. stat. sol. (c) 3, No. 6, 1388 (2006)
J. S. Ha, H. J. Lee, S. W. Lee, H. J. Lee, S. H. Lee, H. Goto, M. W. Cho, T. Yao, S. K. Hong, R. Toba, J. W. Lee, J. Y. Lee, Appl. Phys. Lett. 92, 091906 (2008)
R. Liu, A. Bell, F. A. Ponce, C. Q. Chen, J. W. Yang, and M. A. Khan, Appl. Phys.Lett., 86, 021908 (2005)
P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figge, and D.
Hommel, J.Appl. Phys., 98, 093519 (2005).
T. B. Wei,z Q. Hu, R. F. Duan, X. C. Wei, J. K. Yang, J. X. Wang, Y. P. Zeng,G. H. Wang, and J. M. Li , Journal of The Electrochemical Society, 157 (7) H721-H726 (2010)
T.Guhne, Z.Bougrioua,S.Laugt, M.Nemoz,P.Vennegues, B.Vinter , M.Leroux,Phys.Rev.B77 (2008) 075308.
T.B. Wei , Q.Hu , R.F. Duan , X.C. Wei ,Z.Q. Huo ,J .X. Wang , Y.P. Zeng , G.H. Wang, J.M. Li, Journal of Crystal Growth , 311(2009) 4153–4157
B. Arnaudov, T. Paskova, E. M. Goldys, S. Evtimova, and B. Monemar, Phys. Rev.B, 64, 045213 (2001).
M. A. Reshchikov , F. Shahedipour, R. Y. Korotkov, B. W. Wessels,
and M. P.Ulmer, J. Appl. Phys. , 87, 3351(2000).
T. Gühne, Z. Bougrioua, S. Laügt, M. Nemoz, P. Vennéguès, B.
Vinter, and M.Leroux , Phys. Rev. B , 77, 075308 (2008).
M. Toth, K. Fleischer, and M. R. Phillips , Phys. Rev. B, 59 , 1575 (1999).
I. Vurgaftman and J. R. Meyer, J. Appl. Phys., 94, 3675 (2003).
N. Kriouche.M. Leroux . P. Venne´gue`s.M. Nemoz . G. Nataf .P. de Mierry “Filtering of Defects in Semipolar (11222) GaN Using 2-Steps Lateral Epitaxial Overgrowth” ,Nanoscale Res Lett (2010)
5:1878–1881
Bernar, Gil, Group Ⅲ Nitride Semiconductor Compounds.” p200.
M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J.
Massies, P.Gibart, J. Appl. Phys, 86(1999), 3721.
S. Dalmasso, E. Feltin, P. de Mierry, B. Beaumont, P. Gibart, M. Leroux, Electron. Lett. 36 ,1728,(2000)
J.W. Yang, A. Lunev, G. Simin, A. Chitnis, M. Shatalov, M. Asif Khan, J.E. Van Nostrand, R. Gaska, Appl. Phys.Lett. 76 ,273, (2000)
Kim J.K, Lee J.L , ELECTROCHEM SOC, 51 ,3, G190-G195, (2004)
T. Egawa, N. Nakada, H. Ishikawa, M. Umeno, Electron.Lett. 36, 1816, (2000)
J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002)
S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, J. Appl. Phys. 83, 826 (1998)
C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung, and Y. F. Chen, Appl. Phys. Lett. 81, 22, (2002)
Z. H. Lan, W. M. Wang, C. L. Sun, S. C. Chi, C. W. Hsu, T. T. Chen, K. H. Chen, C. C. Chen, Y. F. Chen, and L. C. Chen, J. Cryst. Growth 269, 87 (2004)
S. Luo, W. Zhou, W. Wang, Z. Zhang, L. Liu, X. Dou, J. Wang, X. Zhao, D. Liu, Y. Gao, L. Song, Y. Xing, J. Zhou, and S. Xie, Appl. Phys. Lett. 87, 063109 (2005)
H. Lu, W. J. Schaff, and L.F. Eastman, J. Appl. Phys. 96, 3577 (2004)
Zhang J, Zhang L, Peng X and Wang X, J. Mater. Chem. 12 802–4 (2002)
Cheng G, Stern E, Turner-Evans D and Reed M, Appl. Phys. Lett. 87 253103 (2005)
Tang T, Han S, Jin W, Liu X, Li D C, Zhang D, Zhou C, Chen B, Han J and Meyyapan M, J. Mater. Res. 19 423 (2004)
M. A. Sánchez-García, J. Grandal, E. Calleja, S. Lazic, J. M. Calleja, and A. Trampert, Phys. Stat. Sol. (b) 243, 1490 (2006)
Yi-Lu Chang, Feng Li, Arya Fatehi and Zetian Mi, nanotechnology 20, 345203 (2009)
J. S. Ha, S. W. Lee, H. J. Lee, H. J. Lee, S. H. Lee, H. Goto, T. Kato, K. Fujii, M. W. Cho and T. Yao, IEEE Photon. Technol. Lett. 20, 175 (2008)
W. Lee, S. Lee, H. Goto, H. Ko, M. Cho, and T. Yao, Phys. Stat. Sol. (c) 3, 1388 (2006).
J. S. Ha, H. J. Lee, S. W. Lee, H. J. Lee, S. H. Lee, H. Goto, M. W. Cho, T. Yao, S. K. Hong, R. Toba, J. W. Lee and J. Y. Lee, Appl. Phys. Lett. 92, 091906 (2008)
K. W. Liu, S.J. Chang, S. J. Young, T. H. Hsueh, H. Hung, Y. C. Mai, S. M. Wang, K. J. Chen, Y. L. Wu, Y. Z. Chen, Nanoscale Res. Lett. 6: 422 (2011)
R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Lüth, Appl. Phys. Lett. 90, 123117 (2007)
Y. H. Kim, W. S. Yun, H. Ruh, C. S. Kim, Y. H. Shin, M. D. Kim, and J. E. Oh, J. Cryst. Growth 312, 662 (2010)