| 研究生: |
林奕維 Lin, I-Wei |
|---|---|
| 論文名稱: |
應用四線圈式共振結構於大間隙非接觸式電能傳輸系統之研究 Study on Large Air-Gap Contactless Power Transfer System with Four-coil Resonator Structure |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 四線圈式共振結構 、非接觸式電能傳輸 、大間隙 |
| 外文關鍵詞: | Four-coil resonator structure, Contactless power transfer, large air gap |
| 相關次數: | 點閱:82 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對電動車輛及搬運載具用之充電裝置,研製非接觸式電能傳輸系統,利於車輛底盤與地面平台具大間隙及水平偏移之狀態進行電能傳輸。本文應用四線圈式共振結構,透過兩組LC共振器,提升大間隙之傳輸效率,且能降低激勵電源及負載端對諧振影響性。文中使用磁場模擬軟體作常見線圈結構之磁場強度分佈模擬,且針對不同繞製方式之線圈進行模擬,並分析其優缺點,依據分析結果設計共振線圈。本研究使用緊密繞製之無間隙環形線圈結構,且饋電線圈與第一共振線圈、取電線圈與第二共振線圈採用同軸共平面結構降低以耦合結構厚度。此外,運用四線圈結構等效模型推導諧振相關參數,使共振器操作於諧振點,實現共振方式作電能傳輸之目的。最後,實驗量測結果顯示,當第一及第二共振線圈間距45 cm時效率約38%,最大輸出功率約129.8 W;水平偏移量在15 cm以內,整體系統傳輸效率尚可維持在30%以上,為偏移量0 cm時效率之72%。
This thesis aims to study contactless power transfer system for electric vehicles battery-charging equipment in order to make this system is beneficial to transfer power in large air gap and lateral misalignment between chassis of the vehicle and ground platform. This thesis applies four-coil resonator structure including two-sets of LC resonator, to enhance the transmission efficiency in large air gap, and then reduce the impact of resonance from excitation source and terminal load. In this thesis, we use magnetic field simulation software to analyze the intensity distribution of magnetic field of different types of coil structure. Based on those analyzed results, the coil of resonator was designed. We use spiral coil structure with no space winding. Moreover, to reduce the volume of coupling structure, the feed coil and the first resonator, the second resonator and load coil to be coaxial and in coplanar type.. After that, the resonant characteristics derived from the four-coil equivalent model, to make resonators can operate at resonant frequency, so that we could fulfill the objective to transfer power in resonance method. Finally, the experimental results show that the highest system efficiency is about 38% at coil spacing is in 45 cm, with the maximum output power is 129.8 W. When the lateral misalignment is 15 cm, the system efficiency still remain at more than 30%, comparing to the efficiency of 72% in the case of zero lateral misalignment.
[1] S. Jeong, Y. J. Jang, and D. Kum, “Economic analysis of the dynamic charging electric vehicle,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6368-6377, Nov. 2015.
[2] A. Kamineni, G. A. Covic, and J. T. Boys, “Analysis of coplanar intermediate coil structures in inductive power transfer systems,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6141-6154, Nov. 2015.
[3] Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasufda, “Compact contactless power transfer system for electric vehicle,” in Proc. IEEE IPEC, 2010, pp. 21-24.
[4] W. Zhou and H. Ma, “Winding structure and circuit design of contactless power transfer platform,” in Proc. IEEE IECON, 2008, pp. 1063-1068.
[5] G. A. Covic, M. L. G. Kissin, D. Kacprzak, N. Clausen, and H. Hao, “A bipolar primary pad topology for EV stationary charging and highway power by inductive coupling,” in Proc. IEEE ECCE, 2011, pp. 1832-1838.
[6] M. Budhia, G. A. Covic, and J. T. Boys, “Design and optimization of circular magnetic structure for lumped inductive power transfer system,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3096-3108, Nov. 2011.
[7] I. Fujita, T. Yamanaka, Y. Kaneko, S. Abe, and T. Yasuda, “A 10kW transformer with a novel cooling structure of a contactless power transfer system for electric vehicles,” in Proc. IEEE ECCE, 2013, pp. 3643-3650.
[8] S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, May 2005.
[9] X. Liu and S. Y. R. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, Jan. 2007.
[10] H. Y. Shen, J. Y. Lee, and T. W. Chang, “Study of contactless inductive Charging platform with core array structure for portable products,” in Proc. IEEE CECNet, 2011, pp. 16-18.
[11] X. Liu and S. Y. R. Hui, “Simulation study and experimental verification of a universal contactless battery charging platform with localized charging features,” IEEE Trans. Power Electron. vol. 22, no. 6, pp. 2202-2210, Nov. 2007.
[12] K. Hatanaka, F. Sato, H. Matsuki, and S. Kikuchi, J. Murakami, “Power tramsfer of a desk with a cord-free power supply,” IEEE Trans. Magn., vol. 38, no. 5, pp. 3329-3331, Sep. 2002.
[13] Y. D. Ko and Y. J. Jang, “The optimal system design of the online electric vehicle utilizing wireless power transmission technology,” IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1255-1265, Sep. 2013.
[14] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE Trans. Ind. Appl., vol. 3, no. 1, pp. 18-36, Mar. 2015.
[15] C. Park, S. Lee, S. Y. Jeong, G. H. Cho, and C. T. Rim, “Uniform power I-type inductive power transfer system with DQ-power supply rails for on-line electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6446-6455, Nov. 2015.
[16] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83–86, 2007.
[17] “The wireless future of energy transfer,” Intel Co., U. S. A[Online]. Available: http//singularityhub.com/2009006/30/the-wireless-power-tran- fer/, 2009.
[18] F. Zhang, S. A. Hackworth, W. Fu, C. Li, Z. Mao, and M. Sun, “Relay effect of wireless power transfer using strongly coupled magnetic resonances,” IEEE Trans. Magn., vol. 47, no. 5, pp. 1478-1481, May 2011.
[19] Y. M. Zhang, Z. M. Zhao, and K. N. Chen, “Frequency-splitting analysis of four-coil resonant wireless power transfer,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2436-2445, Dec. 2013.
[20] R. Huang, B. Zhang, D. Qiu, and Y. Zhang, “Frequency splitting phenomena of magnetic resonant coupling wireless power transfer,” IEEE Trans. Magn., vol. 50. no. 11, pp. 1-4, Nov. 2014.
[21] A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544-554, Oct. 2010.
[22] Y. Zhang, Z. Zhao, and T. Lu, “Quantitative analysis of system efficiency and output power of four-coil resonant wireless power transfer,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 184-190, Mar. 2015.
[23] Z. Zhang, K. T. Ckau, C. H. Liu, F. H. Li, and T. W. Ching, “Quantitative analysis of mutual inductance for optimal wireless power transfer via magnetic resonant coupling,” IEEE Trans. Magn., vol. 50, no. 11, article 8600504, Nov. 2014.
[24] T. Duong and J. Lee, “Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 442-444, Aug. 2011.
[25] J. Park, Y. Tak, Y. G. Kim, Y. W. Kim, and S. Nam, “Investigation of adaptive matching method for near-field wireless power transfer,” IEEE Trans. Antennas Propag., vol. 59, no. 5, pp. 1769-1773, May 2011.
[26] Z. Dang, Y. Cao, and J. A. Abu, “Reconfigurable magnetic resonance-coupled wireless power transfer system,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6057-6069, Nov. 2015.
[27] W. S. Lee, W. I. Son, K. S. Oh, and J. W. Yu,“Contactless energy transfer systems using antiparallel resonant loops, ” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 350-359, Nov. 2011.
[28] Y. L. Lyu, F. Y. Meng, G. H. Yang, B. J. Che, Q. Wu, L. Sun, and D. Erni, “A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6097-6107, Nov. 2015.
[29] S. Y. R. Hui, W. Zhong, and C. K. Lee, “A critical review of recent progress in mid-range wireless power transfer,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4500-4511, Sep. 2014.
[30] J. Kim, H. Son, K. Kim, and Y. Park, “Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 389-392, May 2011.
[31] D. Ahn and S. C. Hong, “A Study on magnetic field repeater in wireless power transfer,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 360-371, Jan. 2013.
[32] Christopher J. Stevens, “Magnetoinductive waves and wireless power transfer,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6782-6190 Nov. 2015.
[33] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, June 2012.
[34] S. C. Moon and G. W. Moon, “Wireless power transfer system with an asymmetric 4-coil resonator for electric vehicle battery chargers,” in Proc. IEEE APEC, 2015, pp. 15-19.
[35] H. Hwang, J. Moon, B. Lee, and C. H. Jeong, “An analysis of magnetic resonance coupling effects on wireless power transfer by coil inductance and placement,” IEEE Trans. Consumer Electronics, vol. 60, no. 2, pp. 203-209, May 2014.
[36] N. Yin, G. Xu, Q. Yang, J. Zhao, X. Yang, J. Jin, W. Fu , and M. Sun, “Analysis of wireless energy transmission for implantable device based on coupled magnetic resonance,” IEEE Trans. vol. 48, no.7, pp.723-726, Jan. 2012.
[37] X. Zhang, S. L. Ho, and W. N. Fu, “Analysis and optimization of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Magn., vol. 48, no. 11, pp. 4511-4514, Nov. 2012.
[38] S. Moon, B. C. Kim, S. Y. Cho, Chi. H. Ahn, and G. W. Moon, “Analysis and design of a wireless power transfer system with an intermediate coil for high efficiency,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 5861-5870, Nov. 2014.
[39] Z. Yan, C. Zhang, Q. Yang, Y. Li, D. Xi, Z. Wang, “Design and analysis of cuboid film resonator for wireless power transmission system based on resonant coupling,” in Proc. IEEE ICEMS, 2012, pp. 1-5.
[40] H. C. Son, J. W. Kim, Y. J. Park, and K. H. Kim, “Efficency analysis and optimal design of a circular loop resonant coil for wireless power transfer,” IEEE Asia-Pacific Micowave Conf., 2010, pp. 7-10.
[41] J. Miranda, G. Fanti, Y. Feng, K. Omanakuttan, R. Ongie, A. Setjoadi, and F. Olin, “Wireless power transfer using weakly coupled magnetostatic resonators,” in Proc. IEEE ECCE, 2010, pp. 4179-4186.
[42] B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1819-1825, July 2009.
[43] C. J. Chen, T. H. Chu, C. L. Lin, and Z. C. Jou, “A study of loosely coupled coils for wireless power transfer,” IEEE Trans. Circuits Syst. II, Exp. Briefs., vol. 57, no. 7, pp. 536-540, Jul. 2010.
[44] L. Yongxiang, Y. Zhou, H. Xingzhe, R. Yi, and W. Yi, “Full-wave analysis of non-radiative wireless power transmission system in half space,” in Proc. IEEE GHTCE, 2012, pp. 155-158.
[45] Z. Chen, W. W. Jing, X. L. Huang, L. L. Tan, C. Chen, and W. Wang, “A promoted design for primary coil in roadway-powered system,” IEEE Trans. Magn., vol. 51, no. 11, article 8402004, Nov. 2015.
[46] M. Kiani and M. Ghovanloo, “The circult theory behind coupled-mode magnetic resonant-based wireless power transmission,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 59, no. 9, pp. 2065-2074, Sep. 2012.
[47] 賴景明,應用四線圈式多環同軸型感應耦合結構於大間隙無線電能傳輸之研究,國立成功大學電機工程學系碩士論文,2012年。
[48] 陳揚,四線圈式多環同軸型無線電能傳輸系統之匹配特性研究,國立成功大學電機工程學系碩士論文,2015年。
[49] 張雅婷,電動搬運載用用非接觸式條帶形感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2015年。
[50] 黃立宇,具新型旋轉式感應耦合結構之非接觸式磁浮旋轉供電系統研製,國立成功大學電機工程學系碩士論文,2015年。
[51] UCC3895 Data sheet, Texas Instruments Inc., 2013.
[52] IR2110 Data sheet, International Rectifier Inc., 2013.