簡易檢索 / 詳目顯示

研究生: 莊佳益
Chuang, Chia-Yi
論文名稱: 用於D類放大器具工作週期補償之輸出級
A Power Stage with Duty Cycle Compensation for Class-D Amplifiers
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 71
中文關鍵詞: D類音頻放大器輸出級失真總諧波失真加雜訊
外文關鍵詞: Class-D audio amplifier, power stage distortion, THD+N
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中實現一技術來改善D類放大器中的輸出級失真,數位輸入D類放大器通常使用開迴路的架構,因此當以較大的輸出功率驅動負載時總諧波失真加雜訊會受到輸出級失真限制。工作週期補償技術提供局部補償改善輸出級失真,透過迴圈濾波器產生的控制訊號來控制輸入脈寬編碼訊號的工作週期,補償因總諧波失真導致的工作週期誤差。迴圈濾波器的高迴圈增益配合雜訊移頻的機制抑制頻寬內的失真,因而改善D類放大器的諧波失真表現。
    本作品實現於TSMC 0.18微米製程,晶片面積為1.7毫米平方。驗證結果顯示在385千赫茲的切換頻率及8歐姆的負載下,此技術將最低諧波失真由原本的-82dB改善至-96dB,因本技術所增加的靜態電流為340微安培。與現有技術的數位輸入D類放大器相比,本作品有相當的諧波失真加雜訊及靜態電流消耗。

    In this thesis, a technique to improve power stage distortion of Class-D amplifiers is implemented. Digital-input Class-D amplifiers usually use open-loop architecture therefore THD+N is limited by power-stage distortion when driving load with large output power. Duty cycle compensation technique provides local compensation for power-stage distortions. The technique controls the duty cycle of input PWM signal with control voltage generated by loop filter to compensate the duty cycle error caused by power stage distortion. The high loop gain of loop filter suppresses the in-band distortion with noise-shaping mechanism thus improving the THD of Class-D amplifiers.
    This work is implemented in 0.18um process with 1.7mm2 chip area. Simulation result shows that the minimum THD is improved from -82dB to -96dB with the technique while driving an 8Ω load at 384kHz switching frequency. The quiescent current increase with the technique is 340μA. Compared with other state-of-the-art digital-input Class-D amplifiers, this work has comparable THD+N and quiescent current consumption.

    Abstract (Chinese)......................................I Abstract (English).....................................II Acknowledgement.......................................III Table of Contents......................................IV List of Tables.........................................VI List of Figures.......................................VII 1 Introduction..........................................1 1.1 Motivation..........................................1 1.2 Organization........................................4 2 Background............................................5 2.1 Class-D Audio Amplifier.............................5 2.2 Power Stage Distortion Analysis....................11 2.3 Prior Arts of Duty Cycle Control Methods...........15 3 System Design........................................23 3.1 Class-D Amplifier with Duty Cycle Compensation.....23 3.2 Realized Duty Cycle Control Circuit................26 3.3 Loop Filter Design for Duty Cycle Compensation.....32 3.4 Noise Analysis of Duty Cycle Compensation..........37 3.5 OPAMP Requirement Analysis.........................40 4 Circuit Implementation...............................44 4.1 Architecture of Duty Cycle Compensation............44 4.2 OPAMP in Loop Filter...............................45 4.3 Duty Cycle Control Circuit and Comparator..........49 4.4 Power Stage........................................51 5 Layout and Results...................................56 5.1 Floorplan and Layout...............................56 5.2 Simulation Results.................................58 5.3 Measurement Setup..................................63 5.4 Comparisons........................................64 6 Conclusions and Future works.........................66 6.1 Conclusions........................................66 6.2 Future Works.......................................67 References.............................................68 Appendix...............................................70

    [1] K.-H. Chen and Y.-S. Hsu, “A High-PSRR Reconfigurable Class-AB/D Audio Amplifier Driving a Hands-Free/Receiver 2-in-1 Loudspeaker,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2586-2603, Nov. 2012.
    [2] S.-H. Chien, L.-T. Wu, S.-Y. Chen, R.-D. Jan, M.-Y. Shih, C.-T. Lin, and T.-H. Kuo, “An Open-Loop Class-D Audio Amplifier with Increased Low-Distortion Output Power and PVT-Insensitive EMI Reduction,” in IEEE Custom Integrated Circuits Conference (CICC), Sept. 2014, pp. 1-4.
    [3] M. Wang, X. Jiang, J. Song, and T. L. Brooks, “A 120 dB Dynamic Range 400 mW Class-D Speaker Driver With Fourth-Order PWM Modulator,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1427-1435, Aug. 2010.
    [4] P. Balmelli, J. M. Khoury, E. Viegas, P. Santos, V. Pereira, J. Alderson and R. Beale, “A Low-EMI 3-W Audio Class-D Amplifier Compatible With AM/FM Radio,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1771-1782, May. 2013.
    [5] F. Chierchie, E. E. Paolini and L. Stefanazzi, “Dead-Time Distortion Shaping,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 53-63, Jan. 2019.
    [6] Y. Choi, W. Tak, Y. Yoon, J. Roh, S. Kwon, and J. Koh, “0.018% THD+N, 88-dB PSRR PWM Class-D Amplifier for Direct Battery Hookup,” IEEE J. Solid-State Circuits, vol. 47, no. 2, pp. 454-463, Feb. 2012.
    [7] K. Nielsen, “High-fidelity PWM-based amplifier concept for activeloudspeaker system with very low energy consumption” J. Audio Eng. Soc., vol. 45, no. 7/8, Jul./Aug. 1997.
    [8] M. Berkhout, L. Dooper and B. Krabbenborg, “A 4Ω 2.65W Class-D Audio Amplifier With Embedded DC-DC Boost Converter, Current Sensing ADC and DSP for Adaptive Speaker Protection,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 2952-2961, Oct. 2013.
    [9] D. Schinkel, W. Groothedde, F. Mostert, M.-J. Koerts, E. v. Iersel, D. Groeneveld, and L. Breems, “A Multiphase Class-D Automotive Audio Amplifier With Integrated Low-Latency ADCs for Digitized Feedback After the Output Filter,” IEEE J. Solid-State Circuits, vol. 52, no. 12, pp. 3181-3193, Dec. 2017.
    [10] S. H. Chien, “Low-Quiescent-Current Low-Distortion Analog-Input and High-Dynamic-Range Digital-Input Class-D Audio Amplifiers,” Ph.D. dissertation, Dept. Electrical Engineering, National Cheng Kung Univ., Tainan, Taiwan, 2019.
    [11] I. D. Mosely, P. H. Mellor, and C. M. Binggam, “Effect of dead time on harmonic distortion in class-D audio power amplifiers,” Electron. Lett., vol. 35, no. 12, pp. 950-952, June 1999.
    [12] J.-M. Liu, S.-H. Chien, and T.-H. Kuo, “A 100 W 5.1-Channel Digital Class-D Audio Amplifier with Single-Chip Design,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1344-1354, Nov. 2014.
    [13] L. Chen and F. Peng, “Dead-time elimination for voltage source inverters,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 574–580, Mar. 2008.
    [14] A. Niwa, T. Imazawa, R. Kojima, M. Yamamoto, T. Sasaya, T. Isobe and H. Tadano, “A dead-time-controlled gate driver using current-sense FET integrated in SiC MOSFET,” IEEE Trans. Power Electron., vol. 33, no. 4, pp. 3258–3267, Apr. 2018.
    [15] T. Guo, T. Ge, and J. S.Chang, “A 101 dB PSRR, 0.0027% THD + N and 94% Power-Efficiency Filterless Class D Amplifier,” IEEE J. Solid-State Circuits, vol. 49, no. 11, pp. 2608-2617, Nov. 2014.
    [16] M. A. Teplechuk, A. Gribben, and C. Amadi, “True Filterless Class-D Audio Amplifier,” IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2784-2793, Dec. 2011.
    [17] M. Kinyua, R. Wang, and S. Soenen, “Integrated 105 dB SNR, 0.0031% THD+N Class-D Audio Amplifier With Global Feedback and Digital Control in 55 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 8, pp. 1764-1771, Aug. 2015.
    [18] A. Nagari, E. Allier, F. Amiar, V. Binet and C. Fraisse, “An 8Ω 2.5W 1%-THD 104dB(A)-Dynamic-Range Class-D Audio Amplifier with Ultra-Low EMI System and Current Sensing for Speaker Protection,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 3068-3080, Dec. 2012.
    [19] L. Dooper and M. Berkhout, “A 3.4 W Digital-In Class-D Audio Amplifier in 0.14 μm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1524-1534, July. 2012.
    [20] F. Guanziroli, R. Bassoli, C. Crippa, D. Devecchi and G. Nicollini, “A 1 W 104 dB SNR Filter-Less Fully-Digital Open-Loop Class D Audio Amplifier With EMI Reduction,” IEEE J. Solid-State Circuits, vol. 47, no. 3, pp. 686-698, Mar. 2012.

    下載圖示 校內:2025-08-24公開
    校外:2025-08-24公開
    QR CODE