簡易檢索 / 詳目顯示

研究生: 陳子捷
Chen, Tzu-Chieh
論文名稱: 颱風風場之波高推算對侵台颱風路徑之合適性分析
Suitability Study of Typhoon Tracks Passed Taiwan by Using Wave-Height Hindcasts from Wind Field
指導教授: 蕭士俊
Hsiao, Shih-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 145
中文關鍵詞: SCHISM颱風風場示性波高
外文關鍵詞: SCHISM, Typhoon, wind field, significant wave height
相關次數: 點閱:93下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 颱風每年在全球造成巨大的經濟損失、影響人民的生命安全,沿海防波堤和基樁等重要基礎設施的設計條件與颱風引發的波浪和暴潮高度相關,本研究對歷史颱風事件進行數值模擬,而可靠的示性波高推算依賴準確的颱風風場。
    採用混合公式將ERA5 再分析風場和MRV 參數颱風風場疊加合併作為驅動波浪潮汐耦合模式的輸入條件,首先針對2016 年莫蘭蒂颱風和梅姬颱風台灣周圍海域的16 個浮標測站修正參數颱風風場開始時間讓示性波高提前上升導致高估的情況改善;比較日本氣象廳和台灣中央氣象局最佳路徑資料對於示性波高推算誤差,結果顯示台灣中央氣象局最佳路徑資料誤差略比日本氣象廳小,選擇近幾年時間解析度較高的台灣中央氣象局最佳路徑資料;最大風速的半徑Rmax 是參數颱風風場和混合公式的重要參數,選取6 個Rmax 公式比較示性波高推算值,結果為Willoughby 和 Rahn(2006) 的Rmax 公式最適合使用在台灣周圍海域,最後再進行模式驗證。
    比較ERA5 再分析風場和更改最適合台灣周圍海域的最佳路徑資料與Rmax 公式後得到的混合風場2 種風場的示性波高推算分別適合台灣中央氣象局分類之1、2、3、4 以及6 號颱風侵台路徑,每種侵台路徑選擇2 個浮標測站最齊全的颱風事件,結果顯示5 種侵台路徑在台灣整體周圍海域都比較適合使用ERA5 再分析風場模擬的示性波高,不過對於部分測站實測值示性波高高於6 公尺時,混合風場仍然有達到修正ERA5 再分析風場的目的。

    Typhoons caused huge losses and threats every year. This study simulated historical typhoon events by using the SCHISM-WWM-III coupled model, and evaluated the suitability of typhoon tracks passed Taiwan by using significant wave height (SWH) hindcasts from typhoon wind field. The reliable SWH hindcasts depended on the accurate wind field. First, the parameters of the blended wind field, which was composed of the ERA5 reanalysis wind field and the MRV parametric typhoon wind field, were modified for Typhoons Meranti and Megi in 2016. By comparing different time of parametric typhoon wind field, the best track data, and the radius of the maximum wind speed (Rmax), the most suitable parameters for the sea area around Taiwan can be obtained. In this study, the SWH hindcasts were obtained by using the best track data from the Central Weather Bureau (CWB) of Taiwan and the Rmax of Willoughby and Rahn (2006) for the blended wind field which gave a better simulation performance. After that, th results of comparing between the modified blended wind field and ERA5 reanalysis wind field which are used to evaluate the suitability of typhoon tracks passed Taiwan were shown, it showed that the ERA5 wind field was more suitable for most of the typhoon events, but for some buoys, which the measured SWHs were greater than 6 meters, the blended wind field can be used to revise the ERA5 wind field.

    摘要 i 英文延伸摘要 ii 誌謝 xii 目錄 xiii 表目錄 xv 圖目錄 xvi 符號說明 xx 第1章 緒論 1 1.1 研究動機及目的 1 1.2 本文架構 3 第2章 文獻回顧 4 2.1 颱風的生成和發展 4 2.2 風浪模式 4 2.3 風場比較 5 第3章 研究方法9 3.1 SCHISM 9 3.2 WWM-III 12 3.3 水深資料和計算網格 14 3.4 潮汐 15 3.5 風場 15 3.5.1 再分析風場(Reanalysis wind field) 16 3.5.2 參數颱風風場(Parametric typhoon wind field) 16 3.5.3 混合風場(Blended wind field) 19 3.6 颱風路徑 20 3.7 浮標數據 21 3.8 驗證指標 23 第4章 結果與討論 25 4.1 參數颱風風場時間比較 27 4.2 最佳路徑資料來源比較 32 4.3 最大風速的半徑Rmax 比較 37 4.4 模式驗證 42 4.5 颱風侵台路徑對風場之合適性分析 45 第5章 結論與建議 61 5.1 結論 61 5.2 建議 62 參考文獻 63 附錄A 參數颱風風場時間比較 68 附錄B 最佳路徑資料來源比較 77 附錄C 最大風速的半徑Rmax 比較 86 附錄D 颱風侵台路徑對風場之合適性分析 95

    [1] Anthes, R. A. Tropical cyclones: their evolution, structure and effects., vol. 19. 1982.
    [2] Booji, N., Holthuijsen, L., and Ris, R. The SWAN wave model for shallow water. Proceedings of the 25th International Conference on Coastal Engineering (1996), 668–676.
    [3] Bretschneider, C. L. The generation and decay of wind waves in deep water. Eos, Transactions American Geophysical Union 33, 3 (1952), 381–389.
    [4] Bushnell, J. M., Cherrett, R. C., and Falvey, R. J. Annual Tropical Cyclone Report 2018. Tech. rep., 2018.
    [5] Chen, W., Chen, K., Kuang, C., Zhu, D. Z., He, L., Mao, X., Liang, H., and Song, H. Influence of sea level rise on saline water intrusion in the Yangtze River Estuary, China. Applied Ocean Research 54 (2016), 12–25.
    [6] Chen, W. B., Chen, H., Hsiao, S. C., Chang, C. H., and Lin, L. Y. Wind forcing effect on hindcasting of typhoon-driven extreme waves. Ocean Engineering 188 (sep 2019).
    [7] Deppermann, S.J., C. E. Notes on the Origin and Structure of Philippine Typhoons. Bulletin of the American Meteorological Society 28, 9 (1947), 399–404.
    [8] Dullaart, J. C., Muis, S., Bloemendaal, N., and Aerts, J. C. Advancing global storm surge modelling using the new ERA5 climate reanalysis. Climate Dynamics 54, 1-2 (jan 2020), 1007–1021.
    [9] Egbert, G. D., and Erofeeva, S. Y. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology 19, 2 (2002), 183–204.
    [10] Emanuel, K. Tropical cyclone energetics and structure. Atmospheric Turbulence and Mesoscale Meteorology 8 (2004), 165–191.
    [11] Emanuel, K., and Rotunno, R. Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. Journal of the Atmospheric Sciences 68, 10 (2011), 2236–2249.
    [12] Gelci R., and Vassal, J. Pr´evision de la haule. La m´ethode des densit´es spectroangulaires. Bulletin d’information du commit´e central d’oc´eanographie et d’´etudes des cˆotes (1957), 416–435.
    [13] Graham, H.E and Nunn, D. Meteorological considerations pertinent to standard project hurricane. 1959.
    [14] Gray, W. M. Global View of the Origin of Tropical Disturbances and Storms. Monthly Weather Review 96, 10 (1968), 669–700.
    [15] Group, T. Ocean Wave Modeling. Springer US, 1985.
    [16] Hanna, S. R., and Heinold, D. W. Development and application of a simple method for evaluating air quality. 1985.
    [17] Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Eake, K., Euring, J. A., Gicnapp, A., Hasselmann, D. E., Kruseman, P., Meerburg, A., Mullen, P., Olbers, D. J., Richren, K., Sell, W., and Walden, H. Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP). Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A (1973).
    [18] Hasselmann, K., Hasselmann, S., Bauer, E., Janssen, P. A., Komen, G. J., Bertotti, L., Lionello, P., Guillaume, A., Cardone, V. C., Greenwood, J. A., Reistad, M., Zambresky, L., and Ewing, J. A. The WAM model - a third generation ocean wave prediction model. J. Phys. Oceanogr. 18, 12 , Dec. 1988 (1988), 1775–1810.
    [19] Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146, 730 (jul 2020), 1999–2049.
    [20] Holland, G. J. An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review 108, 8 (1980), 1212–1218.
    [21] Houston, S. H., and Powell, M. D. Observed and Modeled Wind and Water-Level Response from Tropical Storm Marco (1990). Weather and Forecasting 9, 3 (1994), 427–439.
    [22] Houston, S. H., Shaffer, W. A., Powell, M. D., and Chen, J. Comparisons of HRD and SLOSH surface wind fields in Hurricanes: Implications for storm surge modeling. Weather and Forecasting 14, 5 (1999), 671–686.
    [23] Hsiao, S. C., Chen, H., Chen, W. B., Chang, C. H., and Lin, L. Y. Quantifying the contribution of nonlinear interactions to storm tide simulations during a super typhoon event. Ocean Engineering 194 (dec 2019).
    [24] Hsiao, S. C., Chen, H., Wu, H. L., Chen, W. B., Chang, C. H., Guo, W. D., Chen, Y. M., and Lin, L. Y. Numerical simulation of large wave heights from Super Typhoon Nepartak (2016) in the eastern waters of Taiwan. Journal of Marine Science and Engineering 8, 3 (mar 2020), 217.
    [25] Hsiao, S. C., Wu, H. L., Chen, W. B., Chang, C. H., and Lin, L. Y. On the sensitivity of typhoon wave simulations to tidal elevation and current. Journal of Marine Science and Engineering 8, 9 (sep 2020).
    [26] Hsu, T. W., Ou, S. H., and Liau, J. M. Hindcasting nearshore wind waves using a FEM code for SWAN. Coastal Engineering 52, 2 (feb 2005), 177–195.
    [27] Janssen, P. The Interaction of Ocean Waves and Wind. Cambridge University Press, 2004.
    [28] Jelesnianski, C. P. Numerical Computations of Storm Surges Without Bottom Stress. Monthly Weather Review 94, 6 (1966), 379–394.
    [29] Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77, 3 (1996), 437–471.
    [30] Knaff, J. A., Longmore, S. P., DeMaria, R. T., and Molenar, D. A. Improved tropicalcyclone flight-level wind estimates using routine infrared satellite reconnaissance. Journal of Applied Meteorology and Climatology 54, 2 (feb 2015), 463–478.
    [31] Knaff, J. A., Sampson, C. R., DeMaria, M., Marchok, T. P., Gross, J. M., and McAdie, C. J. Statistical tropical cyclone wind radii prediction using climatology and persistence. Weather and Forecasting 22, 4 (aug 2007), 781–791.
    [32] Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Kiyotoshi, T. The JRA-55 reanalysis: General specifications and basic characteristics. Journal of the Meteorological Society of Japan 93, 1 (2015), 5–48.
    [33] Li, D., Staneva, J., Grayek, S., Behrens, A., Feng, J., and Yin, B. Skill assessment of an atmosphere-wave regional coupled model over the east china sea with a focus on typhoons. Atmosphere 11, 3 (2020).
    [34] Li, J., Pan, S., Chen, Y., Fan, Y. M., and Pan, Y. Numerical estimation of extreme waves and surges over the northwest Pacific Ocean. Ocean Engineering 153 (2018), 225–241.
    [35] Liau, J.-M., Ou, S.-H., and Hsu, T.-W. A Study of Wind Waves Hindcasting on the Coastal Waters. Tech. rep., 2001.
    [36] Mentaschi, L., Besio, G., Cassola, F., and Mazzino, A. Problems in RMSE-based wave model validations. Ocean Modelling 72 (2013), 53–58.
    [37] Molod, A., Takacs, L., Suarez, M., and Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geoscientific Model Development 8, 5 (2015), 1339–1356.
    [38] Myers, V. Maximum hurricane winds. Bulletin of the American Meteorological Society 38, 4 (1957), 226–228.
    [39] Myers, V. a., and Malkin, W. Some properties of hurricane wind fields as deduced from trajectories. Tech. rep., 1961.
    [40] Nederhoff, K., Giardino, A., Van Ormondt, M., and Vatvani, D. Estimates of tropical cyclone geometry parameters based on best-track data. Natural Hazards and Earth System Sciences 19, 11 (oct 2019), 2359–2370.
    [41] Pan, Y., Chen, Y. P., Li, J. X., and Ding, X. L. Improvement of wind field hindcasts for tropical cyclones. Water Science and Engineering 9, 1 (jan 2016), 58–66.
    [42] Phadke, A. C., Martino, C. D., Cheung, K. F., and Houston, S. H. Modeling of tropical cyclone winds and waves for emergency management. Ocean Engineering 30, 4 (mar 2003), 553–578.
    [43] Pierson, W. J., Neumann, G., James, R., and Pierson Jr, W. J., Neumann, G., & James, R. W. Practical methods for observing and forecasting ocean waves by means of wave spectra and statistics. 1955.
    [44] Ramon, J., Lledó, L., Torralba, V., Soret, A., and Doblas-Reyes, F. J. What global reanalysis best represents near-surface winds? Quarterly Journal of the Royal Meteorological Society 145, 724 (oct 2019), 3236–3251.
    [45] Rankine, W. J. M. A Manual of Applied Mechanics. 1882.
    [46] Roland, A. Development of the WWM II (Wind Wave Model II) - Spectral wave modelling on unstructured meshes. PhD thesis, Tech. Univ. Darmstadt (2009).
    [47] Ruiz-Salcines, P., Salles, P., Robles-Díaz, L., Díaz-Hernández, G., Torres-Freyermuth, A., and Appendini, C. M. On the use of parametric wind models for wind wave modeling under tropical cyclones. Water (Switzerland) 11, 10 (oct 2019), 2044.
    [48] Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y. T., Chuang, H. Y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., Van Den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E. The NCEP climate forecast system version 2. Journal of Climate 27, 6 (2014), 2185–2208.
    [49] Schloemer, R. W. Analysis and Synthesis of Hurricane Wind Patterns over Lake Okeechobee, Florida. Tech. rep., 1954.
    [50] Shao, Z., Liang, B., Li, H., Wu, G., and Wu, Z. Blended wind fields for wave modeling of tropical cyclones in the South China Sea and East China Sea. Applied Ocean Research 71 (feb 2018), 20–33.
    [51] Silva, R., Govaere, G., Salles, P., Bautista, G., and Díaz, G. Oceanographic Vulnerability To Hurricanes on the Mexican Coast. Coastal Engineering (2002).
    [52] Sverdrup, H., and Munk, W. Wind, Sea, and Swell. Theory of Relations For FOrecasting. No. 601. 1947.
    [53] Tolman, H. L. The numerical model WAVEWATCH. 1989.
    [54] Willmott, C. J. On the validation of models. Physical Geography 2, 2 (1981), 184–194.
    [55] Willoughby, H. E., Darling, R. W., and Rahn, M. E. Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Monthly Weather Review 134, 4 (apr 2006), 1102–1120.
    [56] Young, I., and Sobey, R. The numerical prediction of tropical cyclone wind-waves. Department of Civil & Systems Engineering, James Cook University of North Queensland, 1981.
    [57] Zhang, Y., and Baptista, A. M. SELFE: A semi-implicit Eulerian-Lagrangian finiteelement model for cross-scale ocean circulation. Ocean Modelling 21, 3-4 (jan 2008), 71–96.
    [58] Zhang, Y. J., Ye, F., Stanev, E. V., and Grashorn, S. Seamless cross-scale modeling with SCHISM. Ocean Modelling 102 (jun 2016), 64–81.

    下載圖示 校內:2024-08-31公開
    校外:2024-08-31公開
    QR CODE