研究生: |
林峻毅 Lin, Juan-Yi |
---|---|
論文名稱: |
具交流端連續電流功率因數修正之自振式LLC LED驅動電路 AC-Side Continuous-Conduction-Mode Power-Factor-Correction Self-Oscillating LLC LED Driver |
指導教授: |
林瑞禮
Lin, Ray-Lee |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 101 |
中文關鍵詞: | LED 、驅動電路 、LLC 、自振式 、定電流控制 、交流端 、連續電流模式 、功率因數修正 |
外文關鍵詞: | LED, Driver, LLC, Self-Oscillating, Constant Current Control, AC-Side, CCM, PFC |
相關次數: | 點閱:103 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文完成交流端連續電流功率因數修正之自振式LLC LED驅動電路。相較於他激式電路,自振式電路可高頻操作,且不須使用控制電路IC及其輔助電源,成本因而較低。自振式LLC諧振電路,其開關能軟切換操作,降低開關損失,提高效率。由於自振式電路之輸出電流會隨著輸入電壓增加而增加,故須加入定電流控制機制,以穩定輸出電流。
傳統直流端不連續功率因數修正電路,因其輸入電流操作在不連續導通模式,有較高之輸入電流di/dt、元件電流應力及開關損失,使電路效率降低。故須使用交流端連續電流功率因數修正機制,提高功率因數,降低輸入電流總諧波失真,以符合IEC61000-3-2 Class C之輸入電流諧波規範。
本論文已研製100W雛型電路,完成系統總成測試,驗證輸入電流的各次諧波,均可符合IEC61000-3-2 Class C之諧波規範。其功率因數為0.99及輸入電流總諧波失真率為9.5%。當輸入交流電壓從100V增加至110V時,定電流控制電路可有效降低LED電流變化率達8%,且電路效率皆在84%以上。
The design and implementation of AC-side continuous-conduction-mode (CCM) power-factor-correction (PFC) self-oscillating LLC LED driver has been completed and verified successfully.
Compared to IC-controlled inverters, usually, self-oscillating inverters are able to operate at high frequency without the need of the control IC and auxiliary power supply for lower component cost. The switches of the self-oscillating LLC resonant inverter achiceve soft-switching to reduce switching losses and increase efficiency. Since the load current of the self-oscillating LLC resonant inverter increases as the input voltage increases, the constant current control scheme is required to regulate the load current.
The conventional DC-side discontinuous-conduction-mode (DCM) PFC inverters have high di/dt, high current stress and high switching losses to cause low circuit efficiency. To meet the IEC61000-3-2 Class C Standard, the AC-side CCM PFC mechanism is used have high power factor and low input current harmonics.
A 100W prototype circuit has been designed and implemented to verify input current harmonics for the fulfillment of IEC61000-3-2 Class C standard. The measured power factor (PF) is 0.99 and total harmonic distortion (THD) is 9.5%. When the AC voltage ranges from 100V to 110V, the variation of LED current with the constant load current control is 8% less than that without the constant load current control. The circuit efficiencies are all above 84%.
[1]R. L. Lin and Z. Q. Wang, “2.65-MHz Self-Oscillating Electronic Ballast with Constant-Load-Current Control for Metal Halide Load,” IEEE Transactions on Power Electronics, vol. 22, no. 3, pp. 839–844, May 2007.
[2]E. Flores, M. Ponce, L.G. Vela, M.A. Juarez, “Analysis and design considerations for very high frequency self-oscillating electronic ballasts”, Power Electronics Congress (CIEP) 2010 12th International, pp. 126-129, 2010.
[3]E. Flores, M. Ponce, L.G. Vela, M.A. Juarez, L. Hernandez, “Analysis and Design Method for High-Frequency Self-Oscillating Electronic Ballasts,” Industry Applications IEEE Transactions on, vol. 47, pp. 2430-2436, 2011, ISSN 0093-9994.
[4]T. J. Liang, C. M. Huang, J. F. Chen, “Two-Stage High-Power-Factor Electronic Ballast for Metal–Halide Loads,” Power Electronics IEEE Transactions on, vol. 24, pp. 2959-2966, 2009, ISSN 0885-8993.
[5]R. J. Cardesin, J. Garcia, J. D. Costa, J. M. Alonso, “Electronic ballast for metal halide loads based on a class E resonant inverter operating at 1 MHz,” Proc. IEEE Appl. Power Electron. Conf. Expo, vol. 1, pp. 600-604, 2005.
[6]Y. Wang , Y. Guan , K. Ren , W. Wang and D. Xu , “A Single-Stage LED Driver Based on BCM Boost Circuit and LLC Converter for Street Lighting System,” in IEEE Tran. on Ind. Electr, vol. 62 , no. 9 , pp. 5446 – 5457 , Sept. 2015 .
[7]Y. Wang , N. Qi , Y. Guan , C. Cecati and D. Xu, “A Single-Stage LED Driver Based on SEPIC and LLC Circuits,” IEEE Trans. Power Electron., Sept. 2016.
[8]Z. Zhou , X. Wan , Y. Shi , Z. Wang and B. Zhang, “High-precision LED driving system based on LLC resonant converter ,” ICISCE 2012
[9]W. Feng, F. C. Lee, P. Mattavelli, “Optimal Trajectory Control of LLC Resonant Converters for LED PWM Dimming,” IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 979-987, Feb. 2014.
[10]J. Zhang, “Advanced Integrated Single-Stage Power Factor Correction Techniques,” PhD. Dissertation, Virginia Tech, Mar.2001.
[11]Electromagnetic Compatibility (EMC)–Part 3: Limits–Section 2: Limits for harmonic current emissions ( equipment current input < 16A per phase ), IEC61000-3-2 Document, 1998.
[12]J. Qian, F. C. Lee, T. Yamauchi, “An improved charge pump power factor correction electronic ballast,” IEEE Trans. Power Electron., vol. 14, no. 6, pp. 1007-1013, Nov. 199
[13]V. Vlatkovic, D. Borojevic, F. C. Lee, “Input filter design for power factor correction circuit,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 199-205, Jan. 1996.
[14]J. Qian, F. C. Lee, “Charge pump power-factor-correction technologies part I: Concept and principle,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 121-129, Jan. 2000.
[15]H. Endo, T. Yamashita, T. Sugiura, “A high-power-factor Buck converter,” Proc. IEEE Power Electron. Spec. Conf. (PESC) Rec., pp. 1071-1076, 1992.
[16]M. C. Ghanem, K. Al-Haddad, G. Roy, “A new single phase buck-boost converter with unity power factor,” Proc. IEEE Ind. Appl. Soc. Annu. Meeting, pp. 785-792, 1993
[17]J. Youm, “A single-stage electronic ballast with high power factor,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 716–718, Jun. 2000.
[18]F. Tao, “Advanced High-Frequency Electronic Ballasting Techniques for Gas Discharge Loads,” Ph.D. dissertation, Virginia Tech., Blacksburg, 2001.
[19]R. Redl, L. Balogh, “Design considerations for single-stage isolated power-factor-corrected power supplies with fast regulation of the output voltage,” Proc. IEEE Appl. Power Electron. Conf. (APEC), pp. 454-458, 1995.
[20]H. Y. Liu, “AC-side CCM Charge-Pump Power Factor Correction Electronic Ballast,” MS Thesis, National Cheng Kung University, June 2005.
[21]C. B. Nascimento, A. J. Perin, “High Power Factor Electronic Ballast for Fluorescent Loads With Reduced Input Filter and Low Cost of Implementation,” Industrial Electronics IEEE Transactions on, vol. 55, pp. 711-721, 2008, ISSN 0278-0046.
[22]M. S. PerdigÃo, J. M. Alonso, M. A. D. Costa, E. S. Saraiva, “Using Magnetic Regulators for the Optimization of Universal Ballasts,” Power Electronics IEEE Transactions on, vol. 23, pp. 3126-3134, 2008, ISSN 0885-8993.
[23]R. L. Lin and Y. D. Lee, “Constant Power Control Based Self-Oscillating Electronic Ballast,” in Proc. IEEE Appl. Power Electronics Conf. and Expo., Mar. 2005, vol. 1, pp. 589–595
[24]E. Flores, M. Ponce, L.G. Vela, M.A. Juarez, R. Osório, “Design method for a self-oscillating electronic ballast with constant load current control,” Power Electronics Congress (CIEP) 2010 12th International, pp. 121-125, 2010.
[25]C. Y. Lin, “Design and Analysis of Piezoelectric Transformer Converters,” 1997.
[26]R. L. Lin, Y. M. Lan, F. Y. Chen, T. J. Liang, J. F. Chen, “Single-stage CCM PFC electronic ballast,” in Proc. IEEE PESC’05, 2005, vol. 1, pp. 605-611.
[27]L. R. Nerone, “Power regulation circuit for high frequency electronic ballast for ceramic metal halide load,” US Patent No 6,479,949, Nov. 12, 2002.
[28]L. R. Nerone, “A novel MOSFET gate driver for the complementary Class D converter,” Proceedings of IEEE Applied Power Electronics Conference, 1999, pp. 760-763.
[29]R. L. Lin, S. Y. Liu and C. C. Lee, “Taylor Series Expression Based Equivalent Circuit Models of LEDs for Analysis of LED Driver System,” IEEE Trans. Ind. Appl, July-Aug. 2013.
[30]R. L. Lin, J. Y. Tsai, J. M. Alonso, D. Gacio, “Four-parameter Taylor Series-Based Light-Emitting-Diode Model,” IEEE J Emerg. Sel. Topics Power Electron, Sept. 2015
[31]P. Baureis, “Compact modeling of electrical thermal and optical LED behavior,” Proc. 35th ESSDERC, pp. 145-148, Sep. 2005.
[32]D. Gacio, J. M. Alonso, J. Garcia, M. S. Perdigão, E. S. Saraiva, F. E. Bisogno, “Effects of the junction temperature on the dynamic resistance of white LEDs,” IEEE Trans. Ind. Appl., vol. 49, no. 2, pp. 750-760, Mar./Apr. 2013.
[33]https://www.vishay.com/docs/91027/sihf620.pdf
[34]http://pdf1.alldatasheet.com/datasheet-pdf/view/152824/INFINEON/IPD60R385CP.html
[35]http://rohmfs.rohm.com/en/products/databook/datasheet/discrete/sic/mosfet/sct2120af-e.pdf
[36]http://dacotech.com.cn/templates/LCSM-SX-0040/xz-pdf/USCI/USCI%E4%B8%89%E4%BB%A3Cascode/UJ3C065080T3S.pdf