簡易檢索 / 詳目顯示

研究生: 林峻毅
Lin, Juan-Yi
論文名稱: 具交流端連續電流功率因數修正之自振式LLC LED驅動電路
AC-Side Continuous-Conduction-Mode Power-Factor-Correction Self-Oscillating LLC LED Driver
指導教授: 林瑞禮
Lin, Ray-Lee
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 101
中文關鍵詞: LED驅動電路LLC自振式定電流控制交流端連續電流模式功率因數修正
外文關鍵詞: LED, Driver, LLC, Self-Oscillating, Constant Current Control, AC-Side, CCM, PFC
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文完成交流端連續電流功率因數修正之自振式LLC LED驅動電路。相較於他激式電路,自振式電路可高頻操作,且不須使用控制電路IC及其輔助電源,成本因而較低。自振式LLC諧振電路,其開關能軟切換操作,降低開關損失,提高效率。由於自振式電路之輸出電流會隨著輸入電壓增加而增加,故須加入定電流控制機制,以穩定輸出電流。
    傳統直流端不連續功率因數修正電路,因其輸入電流操作在不連續導通模式,有較高之輸入電流di/dt、元件電流應力及開關損失,使電路效率降低。故須使用交流端連續電流功率因數修正機制,提高功率因數,降低輸入電流總諧波失真,以符合IEC61000-3-2 Class C之輸入電流諧波規範。
    本論文已研製100W雛型電路,完成系統總成測試,驗證輸入電流的各次諧波,均可符合IEC61000-3-2 Class C之諧波規範。其功率因數為0.99及輸入電流總諧波失真率為9.5%。當輸入交流電壓從100V增加至110V時,定電流控制電路可有效降低LED電流變化率達8%,且電路效率皆在84%以上。

    The design and implementation of AC-side continuous-conduction-mode (CCM) power-factor-correction (PFC) self-oscillating LLC LED driver has been completed and verified successfully.
    Compared to IC-controlled inverters, usually, self-oscillating inverters are able to operate at high frequency without the need of the control IC and auxiliary power supply for lower component cost. The switches of the self-oscillating LLC resonant inverter achiceve soft-switching to reduce switching losses and increase efficiency. Since the load current of the self-oscillating LLC resonant inverter increases as the input voltage increases, the constant current control scheme is required to regulate the load current.
    The conventional DC-side discontinuous-conduction-mode (DCM) PFC inverters have high di/dt, high current stress and high switching losses to cause low circuit efficiency. To meet the IEC61000-3-2 Class C Standard, the AC-side CCM PFC mechanism is used have high power factor and low input current harmonics.
    A 100W prototype circuit has been designed and implemented to verify input current harmonics for the fulfillment of IEC61000-3-2 Class C standard. The measured power factor (PF) is 0.99 and total harmonic distortion (THD) is 9.5%. When the AC voltage ranges from 100V to 110V, the variation of LED current with the constant load current control is 8% less than that without the constant load current control. The circuit efficiencies are all above 84%.

    Chapter 1. Introduction 1 1.1. Background 1 1.2. Motivation 2 1.3. Outline of Thesis 11 Chapter 2. Self-Oscillating LLC LED Driver 12 2.1. Introduction 12 2.2. Approximate Linear Model for Employed LED 12 2.3. NXM LED Array 15 2.4. Resonant Tank 9 2.5. Operational Principle 26 2.6. Summery 40 Chapter 3. AC-Side CCM PFC Self-Oscillating LLC LED Driver 41 3.1. Introduction 41 3.2. AC-Side CCM PFC Mechanism 41 3.3. EMI Filter 43 3.4. Constant Load Current Control Network 46 3.5. Summery 51 Chapter 4. Implementation and Experimental Results 52 4.1. Introduction 52 4.2. Implementation of AC-Side CCM PFC Self-Oscillating LLC Inverter 52 4.3. Implementation of Proposed LED Driver with IPD60R385CP Si MOSFET 56 4.4. Implementation of Proposed LED Driver with SC2120AF SiC MOSFET 66 4.5. Implementation of Proposed LED Driver with UJ3C065080T3S SiC MOSFET 77 4.6. Implementation of AC-Side CCM PFC Self-Oscillating LLC LED Driver with Constant Load Current Control Network 90 4.7. Summery 97 Chapter 5. Conclusions and Future Work 98 References 99

    [1]R. L. Lin and Z. Q. Wang, “2.65-MHz Self-Oscillating Electronic Ballast with Constant-Load-Current Control for Metal Halide Load,” IEEE Transactions on Power Electronics, vol. 22, no. 3, pp. 839–844, May 2007.
    [2]E. Flores, M. Ponce, L.G. Vela, M.A. Juarez, “Analysis and design considerations for very high frequency self-oscillating electronic ballasts”, Power Electronics Congress (CIEP) 2010 12th International, pp. 126-129, 2010.
    [3]E. Flores, M. Ponce, L.G. Vela, M.A. Juarez, L. Hernandez, “Analysis and Design Method for High-Frequency Self-Oscillating Electronic Ballasts,” Industry Applications IEEE Transactions on, vol. 47, pp. 2430-2436, 2011, ISSN 0093-9994.
    [4]T. J. Liang, C. M. Huang, J. F. Chen, “Two-Stage High-Power-Factor Electronic Ballast for Metal–Halide Loads,” Power Electronics IEEE Transactions on, vol. 24, pp. 2959-2966, 2009, ISSN 0885-8993.
    [5]R. J. Cardesin, J. Garcia, J. D. Costa, J. M. Alonso, “Electronic ballast for metal halide loads based on a class E resonant inverter operating at 1 MHz,” Proc. IEEE Appl. Power Electron. Conf. Expo, vol. 1, pp. 600-604, 2005.
    [6]Y. Wang , Y. Guan , K. Ren , W. Wang and D. Xu , “A Single-Stage LED Driver Based on BCM Boost Circuit and LLC Converter for Street Lighting System,” in IEEE Tran. on Ind. Electr, vol. 62 , no. 9 , pp. 5446 – 5457 , Sept. 2015 .
    [7]Y. Wang , N. Qi , Y. Guan , C. Cecati and D. Xu, “A Single-Stage LED Driver Based on SEPIC and LLC Circuits,” IEEE Trans. Power Electron., Sept. 2016.
    [8]Z. Zhou , X. Wan , Y. Shi , Z. Wang and B. Zhang, “High-precision LED driving system based on LLC resonant converter ,” ICISCE 2012
    [9]W. Feng, F. C. Lee, P. Mattavelli, “Optimal Trajectory Control of LLC Resonant Converters for LED PWM Dimming,” IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 979-987, Feb. 2014.
    [10]J. Zhang, “Advanced Integrated Single-Stage Power Factor Correction Techniques,” PhD. Dissertation, Virginia Tech, Mar.2001.
    [11]Electromagnetic Compatibility (EMC)–Part 3: Limits–Section 2: Limits for harmonic current emissions ( equipment current input < 16A per phase ), IEC61000-3-2 Document, 1998.
    [12]J. Qian, F. C. Lee, T. Yamauchi, “An improved charge pump power factor correction electronic ballast,” IEEE Trans. Power Electron., vol. 14, no. 6, pp. 1007-1013, Nov. 199
    [13]V. Vlatkovic, D. Borojevic, F. C. Lee, “Input filter design for power factor correction circuit,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 199-205, Jan. 1996.
    [14]J. Qian, F. C. Lee, “Charge pump power-factor-correction technologies part I: Concept and principle,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 121-129, Jan. 2000.
    [15]H. Endo, T. Yamashita, T. Sugiura, “A high-power-factor Buck converter,” Proc. IEEE Power Electron. Spec. Conf. (PESC) Rec., pp. 1071-1076, 1992.
    [16]M. C. Ghanem, K. Al-Haddad, G. Roy, “A new single phase buck-boost converter with unity power factor,” Proc. IEEE Ind. Appl. Soc. Annu. Meeting, pp. 785-792, 1993
    [17]J. Youm, “A single-stage electronic ballast with high power factor,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 716–718, Jun. 2000.
    [18]F. Tao, “Advanced High-Frequency Electronic Ballasting Techniques for Gas Discharge Loads,” Ph.D. dissertation, Virginia Tech., Blacksburg, 2001.
    [19]R. Redl, L. Balogh, “Design considerations for single-stage isolated power-factor-corrected power supplies with fast regulation of the output voltage,” Proc. IEEE Appl. Power Electron. Conf. (APEC), pp. 454-458, 1995.
    [20]H. Y. Liu, “AC-side CCM Charge-Pump Power Factor Correction Electronic Ballast,” MS Thesis, National Cheng Kung University, June 2005.
    [21]C. B. Nascimento, A. J. Perin, “High Power Factor Electronic Ballast for Fluorescent Loads With Reduced Input Filter and Low Cost of Implementation,” Industrial Electronics IEEE Transactions on, vol. 55, pp. 711-721, 2008, ISSN 0278-0046.
    [22]M. S. PerdigÃo, J. M. Alonso, M. A. D. Costa, E. S. Saraiva, “Using Magnetic Regulators for the Optimization of Universal Ballasts,” Power Electronics IEEE Transactions on, vol. 23, pp. 3126-3134, 2008, ISSN 0885-8993.
    [23]R. L. Lin and Y. D. Lee, “Constant Power Control Based Self-Oscillating Electronic Ballast,” in Proc. IEEE Appl. Power Electronics Conf. and Expo., Mar. 2005, vol. 1, pp. 589–595
    [24]E. Flores, M. Ponce, L.G. Vela, M.A. Juarez, R. Osório, “Design method for a self-oscillating electronic ballast with constant load current control,” Power Electronics Congress (CIEP) 2010 12th International, pp. 121-125, 2010.
    [25]C. Y. Lin, “Design and Analysis of Piezoelectric Transformer Converters,” 1997.
    [26]R. L. Lin, Y. M. Lan, F. Y. Chen, T. J. Liang, J. F. Chen, “Single-stage CCM PFC electronic ballast,” in Proc. IEEE PESC’05, 2005, vol. 1, pp. 605-611.
    [27]L. R. Nerone, “Power regulation circuit for high frequency electronic ballast for ceramic metal halide load,” US Patent No 6,479,949, Nov. 12, 2002.
    [28]L. R. Nerone, “A novel MOSFET gate driver for the complementary Class D converter,” Proceedings of IEEE Applied Power Electronics Conference, 1999, pp. 760-763.
    [29]R. L. Lin, S. Y. Liu and C. C. Lee, “Taylor Series Expression Based Equivalent Circuit Models of LEDs for Analysis of LED Driver System,” IEEE Trans. Ind. Appl, July-Aug. 2013.
    [30]R. L. Lin, J. Y. Tsai, J. M. Alonso, D. Gacio, “Four-parameter Taylor Series-Based Light-Emitting-Diode Model,” IEEE J Emerg. Sel. Topics Power Electron, Sept. 2015
    [31]P. Baureis, “Compact modeling of electrical thermal and optical LED behavior,” Proc. 35th ESSDERC, pp. 145-148, Sep. 2005.
    [32]D. Gacio, J. M. Alonso, J. Garcia, M. S. Perdigão, E. S. Saraiva, F. E. Bisogno, “Effects of the junction temperature on the dynamic resistance of white LEDs,” IEEE Trans. Ind. Appl., vol. 49, no. 2, pp. 750-760, Mar./Apr. 2013.
    [33]https://www.vishay.com/docs/91027/sihf620.pdf
    [34]http://pdf1.alldatasheet.com/datasheet-pdf/view/152824/INFINEON/IPD60R385CP.html
    [35]http://rohmfs.rohm.com/en/products/databook/datasheet/discrete/sic/mosfet/sct2120af-e.pdf
    [36]http://dacotech.com.cn/templates/LCSM-SX-0040/xz-pdf/USCI/USCI%E4%B8%89%E4%BB%A3Cascode/UJ3C065080T3S.pdf

    無法下載圖示 校內:2024-07-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE