簡易檢索 / 詳目顯示

研究生: 溫政宏
Wen, Cheng-Hung
論文名稱: 鈣鈦礦(Na,K)(Nb,Ta)O3:Er螢光材料之研製及其螢光性質研究
Synthesis and the Characteristics of the Photoluminescence Properties of the Erbium Doped Perovskite-type (Na,K)(Nb,Ta)O3 Phosphors
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 110
中文關鍵詞: 光激發光
外文關鍵詞: Photoluminescence
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文主要研究以固態燒結法所製成之摻雜鉺的鈣鈦礦氧化物(Na,K)(Nb,Ta)O3其光電性質,並試圖發展出鈣鈦礦結構的螢光粉。在鈮酸鉀(KNbO3)晶體方面,我們研究了其光激發光光譜(Photoluminescence; 簡稱PL) 分別與燒結溫度、摻鉺濃度、退火(annealing)溫度及極化條件的關係。在燒結溫度方面,研究結果發現,鉺莫耳濃度固定為百分之一 (1 mol%),當燒結溫度為1060℃時,光激發光光譜會具有最大之螢光強度。在鉺濃度方面,當鉺莫耳濃度為百分之三時,綠光光譜具有最大之發光強度;但是在紅光及紅外線波段上,最大發光強度則是發生在鉺莫耳濃度為百分之五之時。實驗結果亦顯示將晶體極化後,晶體光譜的精細結構及不同波段的發光強度比例會有所改變,這些改變與極化電場的強度及極化的時間有關係。此外,PL光譜強度亦為退火溫度的函數,研究發現退火溫度愈高,PL強度愈強;其原因應該是退火使樣品缺陷減少,並降低樣品所吸附的氫氧基數量。我們亦發現鈮酸鉀晶體因鉺離子的摻雜而於絕對溫度約200K時產生一個新的相變(Phase transition)點.
    在鉭鈮酸鉀(KTaxNb1-xO3)晶體方面,我們以鉭離子逐漸取代鈮來提升晶體的發光效率,並研究鉭濃度對晶體結構、拉曼光譜及PL光譜之影響。在PL光譜方面,以鉭離子逐漸取代鈮會改變鉺離子綠光、紅光及紅外線各波段之發光強度及光譜波形,並使光的頻率產生藍位移的現象。由於晶體晶格場(crystal field)的改變,當鉭濃度較低時,其PL光譜尖峰(peaks)較多且波形較為尖銳(半高寬較窄);當鉭濃度較高時,其PL光譜波形變的較為寬廣,尖峰變少。當鉭完全取代鈮時,PL強度於數量級上約可增強10倍,其機制應是鉭取代鈮使得主體晶體一階拉曼散射強度減弱,因此發光強度將因非輻射能量釋放的減少而變強。
    在鈮酸鉀鈉(NaxK1-xNbO3)系統方面,我們改變以鈉離子逐漸取代鉀來提升晶體的發光效率,並研究鈉濃度對PL光譜之影響。實驗結果發現,以鈉離子逐漸取代鉀亦同樣會改變鉺離子綠光、紅光及紅外線各波段之發光強度及光譜波形。當鈉完全取代鉀時,其PL強度於數量級上亦可約增強10倍,然而其機制卻是與鉭鈮酸鉀(KTaxNb1-xO3)晶體不同。鈉取代鉀能增強發光強度,是因為主體晶體(host)對激發光源之吸收度會隨鈉取代鉀的濃度提高而提升,主體晶體吸收激發光源之能量後再轉移給鉺離子使其發光。因此,NaxK1-xNbO3晶體之PL強度會隨鉀離子之逐漸被取代而增強。

    In this research, we investigated the luminescence properties of erbium-doped perovskite type (Na, K)(Nb, Ta)O3 polycrystalline, which were prepared by the solid-state synthesis, to find a new perovskite type phosphor. In KNbO3 system, the Stokes photoluminescence spectra with different sintering temperature, Er doped concentration, annealing temperature and polarization condition have been investigated. Sintering temperature study showed that the PL have maximum intensity at Ts = 1060℃ for the sample with CEr = 1%. Concentration study indicated that the green emission has maximum intensity in the 3% Er doped concentration, but the red and near infrared emission in 5%. The experiments also showed that the polarization enhances the fine structure and modifies the intensity ratio of the 4S3/2 → 4I15/2, 4F9/2 → 4I15/2 and the 4S3/2 → 4I13/2 transition spectra at different poling electric fields and poling times for the samples doped with 5% of erbium. The intensity of the PL spectra is also a function of the annealing temperature; the relative intensity of 4S3/2 → 4I15/2 , 4F9/2 → 4I15/2 and the 4S3/2 → 4I13/2 transitions increased where the annealing temperature was increased, which should be due to the decreased defect in the sample and the absence of hydroxyl groups of the samples after annealing.
    In KTaxNb1-xO3 system, the efficiency of luminescence tried to raise by adjusting host content, concentration of erbium and sintering temperature and studied the relationships of the crystal structure, and Raman and photoluminescence (PL) spectra with the tantalum concentration, respectively. The experiments showed that the tantalum dopants modified the intensity of the green, red and near-infrared emission bands. The experiments also showed a blue shift for the 2 mol% erbium doped KTN samples with different tantalum compositions. Doping Ta not only led to the change in PL intensity but also in spectral shapes. The PL spectra showed the splitting peaks for the samples with low Ta compositions. Then these peaks combined and broadened as Ta concentration increase. When Ta was substituted for Nb completely, the luminescence intensity of the green emission band had an increase of approximately about one order of magnitude, which was because of the absence of the first-order phonon relaxation in the high-Ta-concentration samples.
    In NaxK1-xNbO3 system, the intensity of luminescence which was enhanced by using the Na ions to substitute for K ions. The emission intensity increased as the Na substitution increased. This dependence of PL intensity on Na concentration should be due to the high Na concentration samples have larger absorb coefficient to the excitation sources.

    Abstract ................................................................ Ⅰ Chinese Abstract ................................................................ Ⅲ Figure Captions ................................................................ Ⅴ Figure Captions.......................................................... Ⅹ Chapter 1 Introduction.................................................. 1 1.1 Perovskite .................................................... 1 1.2 Luminescence of rare-earth ions doped in perovskite-type oxides ................................................................. 2 1.3 Potassium niobat .............................................. 3 1.4 Potassium tantalite ........................................... 4 1.5 Sodium niobate ................................................ 5 1.6 Erbium ........................................................ 5 1.7 Organization of this thesis ................................... 7 Chapter 2 .............................................................. 8 2.1 Judd-Ofelt theory ................................................. 8 2.2 Phosphor .......................................................... 8 2.2.1 Phosphor design .................................................. 8 2.2.2 Configurational coordinate diagram ............................... 16 Chapter 3 Experiments .................................................. 20 3.1 Sample preparation ................................................. 20 3.2 Photoluminescence ................................................... 21 3.2.1 Photoluminescence excitation ...................................... 22 3.2.2 Photoluminescence Spectrum ........................................ 22 3.3 Raman Theory ........................................................ 23 Chapter 4 The Potassium niobate system .................................. 28 4.1 Introduction ........................................................ 28 4.2 The X-ray diffraction (XRD) and SEM images .......................... 28 4.3 The Raman spectra ................................................................. 32 4.4 The Stokes photoluminescence ....................................................... 33 4.4.1 Dependence of PL spectra on sintering temperature ................. 34 4.4.2 Dependence of PL spectra on erbium concentration .................. 35 4.5 The annealing effect ................................................ 39 4.5.1 X-ray diffraction (XRD) and SEM images ............................ 39 4.5.2 Dependence of PL spectra on annealing temperature ................. 39 4.6 The phase transition ................................................ 46 4.6.1 Dependence of Raman spectra on temperature ........................ 46 4.6.2 Dependence of PL spectra on temperature ........................... 50 4.7 The poling effect ................................................... 56 4.7.1 Dependence of Raman spectra on poling time ........................ 56 4.7.2 Dependence of PL spectra on poling time ........................... 58 4.7.3 Dependence of PL spectra on poling field intensity ................ 64 Chapter 5 Potassium Tantalate Niobate System ............................ 68 5.1 Introduction ........................................................ 68 5.2 The X-ray diffraction (XRD) and TEM images .......................... 68 5.3 The Raman spectra ................................................... 73 5.4 The Stokes photoluminescence ........................................ 76 5.4.1 Dependence of PL spectra on tantalite concentration used 514.5 nm argon ion lasers ......................................... 76 5.4.2 Dependence of PL spectra on tantalite concentration used 325 nm He-Cd ion lasers ............................................ 84 5.4.3 Dependence of PL spectra on sintering temperature used 325 nm He-Cd ion lasers ............................................ 87 Chapter 6 Sodium Potassium Niobate System ............................... 90 6.1 Introuction ......................................................... 90 6.2 The X-ray diffraction (XRD) and SEM images .......................... 90 6.3 The Raman sprectra .................................................. 93 6.4 The Stokes photoluminescence ........................................ 96 6.4.1 Dependence of PLE spectra on sodium concentration ................. 96 6.4.2 Dependence of PL spectra on sodium concentration used 384 nm of Xe lamp .................................................................... 98 Chapter 7 Summary and Recommendations for Future work ................... 100 7.1 Summary ............................................................. 100 7.2 Suggestions for future work ......................................... 102 Reference ............................................................... 103

    [1] S.J. Heyes, Structures of Simple Inorganic Solids, Fourth of Four Lectures in the 1st Year Inorganic Chemistry Course, Hilary Term 2000.
    [2] Kuldeep Singh, Vijendra Lingwal, S.C. Bhatt, N.S. Panwar, Mat. Res. Bull. 36 (2001) 2365.
    [3] S. Makishima, K. Hasegawa, S. Shionoya, J. Phys. Chem. Solids 23 (1962) 749.
    [4] S. Makishima, H. Yamamoto, T. Tomotsu, S. Shionoya, J. Phys. Soc. Japan 20 (1965) 2147.
    [5] H. Yamamoto, S. Makishima, S. Shionoya, J. Phys. Soc. Japan 23 (1967) 1321.
    [6] M.J. Weber, R.F. Schaufele, J. Chem. Phys. 43 (1965) 1702.
    [7] A. Vecht, D.W. Smith, S.S. Chadha, C.S. Gibbons, J. Koh, D. Morton, J. Vac. Sci. Technol. B12 (1994) 781.
    [8] P.T. Diallo, P. Boutinaud, R. Mahiou, J.C. Cousseins, Phys. Stat. Sol. A 160 (1997) 255.
    [9] H. Toki, Y. Sato, K. Tamura, F. Kataoka, S. Itoh, Proc. Third Int. Display Workshops 2 (1996) 919.
    [10] S. Wolfgang, Rare earth doped LiNbO3 waveguide ampli-fiers and lasers, in: J.H. Marsh, R.M. De La Rue (Eds.),Waveguide Optoelectronics, Kluwer Academic Publishing,Dordrecht, 1992.
    [11] J.E. Alfonso, M.J. Martin, C. Zaldo, Appl. Phys. Lett. 71 (1997) 2904.
    [12] R. Brinkmann, W. Sohler, and H. Suche, Electron. Lett. 27 (1991) 415.
    [13] P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, Appl.Phys. Lett. 61 (1992) 1257.
    [14] Y.N. Xu, W.V. Ching and R.H. French, Ferroelectrics. 111 (1990) 23.
    [15] T. Neumann, G. Borstel, C. Scharfschwardt and M. Neumann, Phys. Rev. B 46 (1992) 10623.
    [16] E.E. Krasovskii, O.V. Krasovska, W. Schattke, Journal of Electron Spectroscopy and Related Phenomena. 83 (1997) 121.
    [17] P.Gunter, Phys. Rep. 93 (1982) 199.
    [18] M.K. Chun, L. Goldberg, J.F. Weller, Appl. Phys. Lett. 53 (1988) 1170.
    [19] L.Goldberg, L.Busse and D. Mehusys, Appl. Phys. Lett. 60 (1992) 1037.
    [20] B.T. Matthias, J. Remeika, Phys. Rev. 82 (1951) 727.
    [21] B. Jaffe, W. R. Cook Jr. and H. Jaffe, Piezoelectric Ceramics, Cleveland, Ohio, (1971).
    [22] Ueno K, Inoue I H, Yamada T, Akoh H, Tokura Y and Takagi H, Appl. Phys. Lett. 84 (2004) 3726
    [23] I. Lefkowitz, K. Lukaszewicz, H.D. Megaw, Acta Crystallogr. 20 (1966) 670.
    [24] A.M.Glazer, H.D. Megaw, ActaCrystallogr. A 29 (1973) 489.
    [25] C.N.W. Darlington and H.D. Megaw, Acta Cryst. B. 29 (1973) 2171.
    [26] C.D.W. Darlington, Solid State Commun. 29 (1979) 307.
    [27] M. Pisarski, Phys. Stat. Sol. B. 101 (1980) 635.
    [28] P. Seidel, H. Bomas and W. Hoffmann, Ferroelectrics. 18 (1978) 243.
    [29] C.N.W. Darlington and K.S. Knight, Physica B. 266 (1999) 368.
    [30] C. Kus, W. S. Ptak and W. Smiga, Ferroelectrics. 124 (1991) 249.
    [31] R. M. Henson, R. R. Zeyfang and K. V. Kiehl, J. Am. Ceram. Soc. 60 (1977) 15.
    [32] L. Nibou, M. Manier and J. P. Mercurio, Ann. Chim. Sci. Mat. 23 (1998) 135.
    [33] S. Hu¨fner, Optical Spectra of Transparent Rare-earth Compounds. Academic, New York, 1978.
    [34] G.H. Dieke, S. Singh, J. Chem. Phys. 35 (1961) 555.
    [35] F. Varsanyi, G.H. Dieke, J. Chem. Phys. 36 (1962) 2951.
    [36] C.B. de Araujo, G.S. Macial, N. Rakov, Y. Messaddeq, J. Non-Cryst. Solids 247 (1999) 209.
    [37] B.R. Reddy, P. Venkateswarlu, Appl. Phys. Lett. 64 (11) (1994) 1327.
    [38] Z. Pan, S.H. Morgan, A. Loper, V. King, B.H. Long, W.E. Collins, J. Appl. Phys. 77 (9) (1995) 4688.
    [39] B.R. Reddy, S.K. Nash-Stevenson, J. Appl. Phys. 76 (6) (1994) 3896.
    [40] K.K. Mahato, D.K. Rai, S.B. Rai, Phys. Status Solidi 174 (1999) 277.
    [41] K.K. Mahato, D.K. Rai, S.B. Rai, Solid. Status Commun. 108 (1998) 671.
    [42] R. Reisfeld, C.K. Jørgensen, in: K.A. Gschneidner, Jr., L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths, vol. 3, Elsevier, Amsterdam, 1998, (Chap.24).
    [43] B.R. Judd, Phys. Rev. 127 (1962) 750.
    [44] G.S. Ofelt, J. Chem. Phys. 27 (1962) 511.
    [45] W.T. Carnall, in: K.A. Gschneidner, Jr., L. Eyring (Eds.), Hand book on the Physics and Chemistry of Rare Earths, vol. 3, Elsevier, Amsterdam, 1998, (Chap. 21).
    [46] G.H. Dieke, in: H.M. Crosswhite, H. Crosswhite (Eds.), Spectra and Energy Levels of Rare Earth ions in Crystals, Interscience, New York, 1968, p. 294, (Chap. 13).
    [47] R. Reisfeld, Y. Eckstein, J. Solid State Chem. 5 (1972) 174.
    [48] A.R. Devi, C.K. Jayasankar, J. Non-Cryst. Solids 197 (1996) 111.
    [49] X. Zou, T. Izumitani, J. Non-Cryst. Solids 162 (1993) 68.
    [50] K. Subramanyam Naidu, S. Buddhudu, Mater. Lett. 14 (1992) 355.
    [51] M.J. Weber, B.H. Matsinger, V.L. Donlan, G.T. Surratt, J. Chem. Phys. 57 (1972) 562.
    [52] Q.Y. Wang, S.Y. Zhang, Y.A. Jia, J. Alloys Compd. 202 (1993) 1.
    [53] Y. Subramanayam, L.R. Moorthy, S.V.J. Lakshman, Mater. Lett. 9 (1990) 277.
    [54] D.M. Gruen, C.W. DeKock, R.L. McBeth, Adv. Chem. Ser. 71 (1967) 102.
    [55] D.M. Gruen, C.W. DeKock, J. Chem. Phys. 45 (1966) 455.
    [56] A. Polman, J. Appl. Phys. 82 (1997) 1.
    [57] Brian R. Judd, Phys. Rev. 127 (1962) 750.
    [58] G. S. Ofelt, J. Chem. Phys. 37 (1962) 511.
    [59] C. W. Nielson and G. F. Koster, Spectroscopic Coefficients for Pn, dn and f n Configurations (MIT Press, Cambridge, MA, 1964), pp. 53–63.
    [60] K. Tanimura, M. D. Shinn, W. A. Sibley, M. D. Drexhage, and R. N. Brown, Phys. Rev. B 30,2429 (1984).
    [61] J. Sanz, R. Cases, and R. Alcala, J. Non-Cryst. Solids 93 (1987) 377.
    [62] P. Goldner and F. Auzel, J. Appl. Phys. 79 (1996) 7972.
    [63] R. S. Quimby and W. J. Miniscalco, J. Appl. Phys. 75 (1994) 613.
    [64] J. A. Medeiros Neto, D. W. Hewak, and H. Tate, J. Non-Cryst. Solids 183 (1995) 201.
    [65] A. A. Kornienko, A. A. Kaminskii, and B. B. Dunina, phys. stat. sol. (b) 157 (1990) 267.
    [66] G.Blasse and B. C. Grabmaier, “Luminescence Material”, Springer, Berlin (1994).
    [67] U. Fluckiger, H. Arend, H.R. Oswald, J. Am. Ceram. Soc. 56 (1977) 575.
    [68] Timothy H. Gfroerer, “Photoluminescence in Analysis of Surfaces and Interfaces”, Encyclopedia of Analytical Chemistry R.A. Meyers (Ed.) p.9209–9231, John Wiley & Sons Ltd, Chichester, 2000.
    [69] S.Dezhong, Mater. Res. Bull. 21 (1986) 1375.
    [70] C-H Lu, S-Y Lo, H-C Lin, Materials letters 34 (1998) 172.
    [71] B.T. Matthias, J.Remeika, Phys. Rev. 82 (1951) 727.
    [72] E.A.Wood, Acta Crystallogr. 4 (1951) 353.
    [73] P.D.Durugkar, A.G.Katpatal, J. Crystal Growth 162 (1996) 161.
    [74] M.Fujii, M.Yoshida, S.Hayashi, K.Yamamoto, J. Appl. Phys. 84 (1998) 4525.
    [75] Timofei M. Kozhan, et al., Spectrochimica Acta Part A 55(1999) 1407.
    [76] X.Chen, T.Nguyen, Q.Luu, B.DiBartolo, J. Luminescence 85(2000) 295.
    [77] M.Inokuti, F.Hirayama, J. Chem. Phys. 43 (1965) 1978.
    [78] W.J.Miniscalco, J. Lightwave Technol. 9 (1991) 234.
    [79] S. Tanabe, H. Hayashi, et al., Optical Materials. 19 (2002) 343.
    [80] T. Miyakawa, D.L. Dexter, Phys. Rev. B. 1 (1970) 2961.
    [81] C. H. Wen, S.Y Chu, S. L. Tyan and Y. D. Juang, J. Crystal Growth. 262 (2004) 225.
    [82] J.A. Capobianco, F. Vetrone, et al., Phys. Chem. Chm. Phys. 2 (2000) 3203.
    [83] B. R. Judd, Phys. Rev. 127 (1962) 750.
    [84] J. S. Ofelt, J. Chem. Phys. 37 (1962) 511.
    [85] M. J. Weber, Phys. Rev. 157 (1967) 262.
    [86] C. K. Jφrgensen, R. reisfeld, J. Less-Common Met. 93 (1983) 107.
    [87] B. T. Matthias, J. Remeika, Phys. Rev. 82 (1951) 727.
    [88] E. A. Wood, Acta Crystallogr. 4 (1951) 353.
    [89] Comes R, Lambert M and Guinier A, Acta Crystallogr. 26 (1970) 244.
    [90] A. W. Hewat, J. Phys. C: Solid State Phys. 6 2559 (1973).
    [91] A. S. Chavs, F.C.S. Barreto, et al., Phys. Rev. B v13,207 (1976).
    [92] M. D. Fontana, G. Metrat, et al., J. Phys. C 16 (1984) 483.
    [93] M. D. Fontana, A. Ride, et al., J. Phys C 21 (1988) 5853.
    [94] Yizhak Yacoby,Yakov Girshberg, Mat. Res. Soc. Symp. Proc. 718 (2002) D8.6.1.
    [95] M. J. Weber, Phys. Rev. 157 (1967) 262.
    [96] C. H. Wen, S.Y. Chu, C. K. Wen, J. Crystal Growth. 269 (2004) 479.
    [97] C. K. Jφrgensen, R. reisfeld, J. Less-Common Met. 93 (1983) 107.
    [98] D. G. Bozinis, J.P. Hurrell, Phys. Rev. B. 13 (1976) 3109.
    [99] A. M. Quittel, M.I. Bell, et al., Phys. Rev. B. 14 (1976) 5068.
    [100] C. H. Wen, S.Y Chu, S. L. Tyan and Y. D. Juang, J. Crystal Growth. 262 (2004) 225.
    [101] D. A. B. Miller, D.S. Chemla, et al., Phys. Rev.B. 32 (1985) 1043.
    [102] S. P. McGinnis, B. Das, M. Dobrowolska, Thin Solid Films. 365 (2000) 2.
    [103] S. Tanabe, H. Hayashi, et al., Optical Materials. 19 (2002) 343.
    [104] T. Miyakawa, D.L. Dexter, Phys. Rev. B. 1 (1970) 2961.
    [105] J.A. Capobianco, F. Vetrone, et al., Phys. Chem. Chm. Phys. 2 (2000) 3203.
    [106] J. Hulliger, R. Gutmann and P. Wagli: Thin Solid Films. 175 (1989) 201.
    [107] S. Yilmaz, T. Venkatesan and R. Gerhard-Multhaupt: Appl. Phys. Lett. 58 (1991) 2479.
    [108] D. G. Bozinis and J. P. Hurrel: Phys. Rev. B 13 (1976) 3109.
    [109] A. M. Quittet, M. I. Bell, M. Krauzman and P. M. Raccah: Phys. Rev. B 14 (1976) 5068.
    [110] P. Vousden: Acta Crystallogr. 4 (1951) 373.
    [111] P. A. Fleury and J. M. Worlock: Phys. Rev. 174 (1968) 613.
    [112] R. Loudon: Phys. Rev. 137 (1965) A1784.
    [113] H. Uwe, K. B. Lyons, H. L. Carter and P.A. Fleury: Phys. Rev. B 33 (1986) 6436
    [114] P. A. Fleury and J. M. Worlock, Phys. Rev. Lett. 18 (1967) 665.
    [115] C.bH. Perry, J. H. Fertel and T. F. Mcnelly: J. Chem. Phys. 47 (1967) 1619.
    [116] W. G. Nilsen and J. G. Skinner: J. Chem. Phys. 47 (1967) 1413
    [117] R. I. Eglitis, A. V. Postnikov and G. Borstel: Phys. Rev. B 55 (1997) 12976.
    [118] R. I. Eglitis, A. V. Postnikov and G. Borstel: Phys. Rev. B 54 (1996) 2421.
    [119] Triebwasser. S ”Phys. Rev” 114 (1956) 63.
    [120] H. D. Megaw. Ferroelectrics. 7 (1974) 87.
    [121] P. Seidel, H. Bomas, and W. Homann, Ferroelectrics. 18 (1978) 243.
    [122] M. Ahtee, A. M. Glazer and H. D. Megaw, Phil. Mag. 26 (1972) 995.
    [123] O.M. Stafsudd, M.Y. Pines, J. Opt. Soc. Am. 62, (1972) 1153.
    [124] S.D. Ross, J. Phys. C 3 (1970) 1785.
    [125] M. Ahtee, A.M. Glazer, Acta Crystallogr. A32 (1976) 434.

    下載圖示 校內:2008-08-18公開
    校外:2010-08-18公開
    QR CODE