| 研究生: |
張哲瑋 Change, Che-Wei |
|---|---|
| 論文名稱: |
建立可顯示人類TP53在基因體內結合位置的視覺化介面 Construction of a viewer of human TP53 genome-wide binding locations |
| 指導教授: |
吳謂勝
Wu, Wei-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | TP53 、ChIP-seq |
| 外文關鍵詞: | TP53, ChIP-seq |
| 相關次數: | 點閱:56 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
TP53是人類基因中最著名的腫瘤抑制蛋白,超過五成的癌症都與突變後的TP53有關,其中TP53含有DNA結合域,能夠使TP53與特定DNA序列結合,藉此開通基因調控網絡,包括細胞週期抑制、細胞凋亡及DNA修復等功能,TP53突變大多發生在DNA結合域中,突變後的TP53不僅喪失原有的功能,還可能促使腫瘤生長。為了瞭解TP53與DNA之間交互作用的關係,必須透過ChIP-seq技術來判定TP53與基因之間的結合位點,所以我們收集了以往發表過的TP53 ChIP-seq資料,但這些資料所使用的人類參考基因組版本較舊,於是我們決定利用Bowtie及HOMER等工具將人類參考基因組更新至最新版hg38並重新分析,最後我們也利用分析完的資料建立成TP53 Genome Viewer。TP53 Genome Viewer提供了兩項功能,首先瀏覽功能能夠在特定基因或特定位置附近查看與TP53的結合情況,搜尋功能能夠快速找出TP53所結合的基因,最後我們也將分析完畢的資料結果提供給使用者方便做後續分析。
TP53 is the most famous tumor suppressor protein in people's gene, more than 50% of mutation of cancer are relate in TP53, furthermore TP53 contain DNA binding domain, it could combined TP53 with specific DNA sequence assemble, thereby open the regulatory network of gene, including the cell cycle arrest、apoptosis and DNA repair. Most TP53 mutations occurred in the DNA binding domain, it made TP53 not only lost the original function but also urge the growth of tumor. In order to understand the interaction between TP53 and DNA, ChIP-seq technology must be used to determine binding sites between TP53 and genes, so we collected the information for TP53 ChIP-seq which published before, but the human reference genome used in these data is too old to use, so we decided to use Bowtie and HOMER to update the human reference genome to the newest version hg38 and re-analyze. At last we use the analyzed data to build TP53 Genome Viewer.TP53 Genome Viewer provides two functions, firstly to browsing nearby the specific genes or specific location to view the combination with TP53, secondly the searching function is able to quickly identify the TP53 associated gene, and the last we also provided the analyzed data to users, it will help them to be more convenient for further analysis.
[1] L. Wiesmuller, “Genetic Stabilization by p53 Involves Growth Regulatory and Repair Pathways,” Journal of biomedicine & biotechnology, vol. 1, no. 1, pp.7-10, 2001.
[2] K.H. Vousden, and C. Prives, “Blinded by the Light: The Growing Complexity of p53,” Cell, vol. 137, no. 3, pp.413-431, 2009.
[3] D. Lane, and A. Levine, “p53 Research: the past thirty years and the next thirty years,” Cold Spring Harbor perspectives in biology, vol. 2, no. 12, p.a000893, 2010.
[4] C.L. Wei, Q. Wu, V.B. Vega, K.P. Chiu, P. Ng, T. Zhang, A. Shahab, H.C. Yong, Y. Fu, Z. Weng, J. Liu, X.D. Zhao, J.L. Chew, Y.L. Lee, V.A. Kuznetsov, W.K. Sung, L.D. Miller, B. Lim, E.T. Liu, Q. Yu, H.H. Ng, and Y. Ruan, “A global map of p53 transcription-factor binding sites in the human genome,” Cell, vol. 124, no. 1, pp.207-219, 2006.
[5] A. Hermannstädter, C. Ziegler, M. Kühl, W. Deppert, and G.V. Tolstonog, “Wild-type p53 enhances efficiency of simian virus 40 large-T-antigen-induced cellular transformation,” Journal of virology, vol. 83, no. 19, pp.10106-10118, 2009.
[6] C.A. Brady, and L.D. Attardi, “p53 at a glance,” Journal of cell science, vol. 123, no. Pt 15, pp.2527-2532, 2010.
[7] A.J. Levine, “p53, the cellular gatekeeper for growth and division,” Cell, vol. 88, no. 3, pp.323-331, 1997.
[8] J. Lin, X. Wu, J. Chen, A. Chang, and A. Levine, Functions of the p53 protein in growth regulation and tumor suppression, Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor Laboratory Press, 1994, pp. 215-223.
[9] M.B. Kastan, and J. Bartek, “Cell-cycle checkpoints and cancer,” Nature, vol. 432, no. 7015, pp.316-323, 2004.
[10] H. Song, M. Hollstein, and Y. Xu, “p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM,” Nature cell biology, vol. 9, no. 5, pp.573-580, 2007.
[11] K.T. Bieging, and L.D. Attardi, “Deconstructing p53 transcriptional networks in tumor suppression,” Trends in cell biology, vol. 22, no. 2, pp.97-106, 2012.
[12] J. Espinosa, “Mechanisms of regulatory diversity within the p53 transcriptional network,” Oncogene, vol. 27, no. 29, pp.4013-4023, 2008.
[13] Y. Haupt, R. Maya, A. Kazaz, and M. Oren, “Mdm2 promotes the rapid degradation of p53,” Nature, vol. 387, no. 6630, p.296, 1997.
[14] C. Tovar, J. Rosinski, Z. Filipovic, B. Higgins, K. Kolinsky, H. Hilton, X. Zhao, B.T. Vu, W. Qing, and K. Packman, “Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 6, pp.1888-1893, 2006.
[15] M.L. Smith, J.M. Ford, M.C. Hollander, R.A. Bortnick, S.A. Amundson, Y.R. Seo, C.-X. Deng, P.C. Hanawalt, and A.J. Fornace, “p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/orgadd45 Genes,” Molecular and cellular biology, vol. 20, no. 10, pp.3705-3714, 2000.
[16] H. Hong, K. Takahashi, T. Ichisaka, T. Aoi, O. Kanagawa, M. Nakagawa, K. Okita, and S. Yamanaka, “Suppression of induced pluripotent stem cell generation by the p53–p21 pathway,” Nature, vol. 460, no. 7259, pp.1132-1135, 2009.
[17] R.-W. Chen, and D.-M. Chuang, “Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression A prominent role in neuroprotection against excitotoxicity,” Journal of Biological Chemistry, vol. 274, no. 10, pp.6039-6042, 1999.
[18] S. Garritano, A. Inga, F. Gemignani, and S. Landi, “More targets, more pathways and more clues for mutant p53,” Oncogenesis, vol. 2, no. 7, p.e54, 2013.
[19] K.P. Olive, D.A. Tuveson, Z.C. Ruhe, B. Yin, N.A. Willis, R.T. Bronson, D. Crowley, and T. Jacks, “Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome,” Cell, vol. 119, no. 6, pp.847-860, 2004.
[20] G. Blandino, A.J. Levine, and M. Oren, “Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy,” Oncogene, vol. 18, no. 2, pp.477-485, 1999.
[21] M. Oren, and V. Rotter, “Mutant p53 gain-of-function in cancer,” Cold Spring Harbor perspectives in biology, vol. 2, no. 2, p.a001107, 2010.
[22] D. Dittmer, S. Pati, G. Zambetti, S. Chu, A.K. Teresky, M. Moore, C. Finlay, and A.J. Levine, “Gain of function mutations in p53,” Nature genetics, vol. 4, no. 1, pp.42-46, 1993.
[23] C. Cadwell, and G.P. Zambetti, “The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth,” Gene, vol. 277, no. 1, pp.15-30, 2001.
[24] G. Bossi, E. Lapi, S. Strano, C. Rinaldo, G. Blandino, and A. Sacchi, “Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression,” Oncogene, vol. 25, no. 2, pp.304-309, 2006.
[25] G.A. Lang, T. Iwakuma, Y.-A. Suh, G. Liu, V.A. Rao, J.M. Parant, Y.A. Valentin-Vega, T. Terzian, L.C. Caldwell, and L.C. Strong, “Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome,” Cell, vol. 119, no. 6, pp.861-872, 2004.
[26] K.P. Olive, D.A. Tuveson, Z.C. Ruhe, B. Yin, N.A. Willis, R.T. Bronson, D. Crowley, and T. Jacks, “Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome,” Cell, vol. 119, no. 6, pp.847-860, 2004.
[27] G.A. Lang, T. Iwakuma, Y.A. Suh, G. Liu, V.A. Rao, J.M. Parant, Y.A. Valentin-Vega, T. Terzian, L.C. Caldwell, L.C. Strong, A.K. El-Naggar, and G. Lozano, “Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome,” Cell, vol. 119, no. 6, pp.861-872, 2004.
[28] C. Zhang, J. Liu, Y. Liang, R. Wu, Y. Zhao, X. Hong, M. Lin, H. Yu, L. Liu, A.J. Levine, W. Hu, and Z. Feng, “Tumour-associated mutant p53 drives the Warburg effect,” Nature communications, vol. 4, no. p.2935, 2013.
[29] W.A. Freed-Pastor, H. Mizuno, X. Zhao, A. Langerod, S.H. Moon, R. Rodriguez-Barrueco, A. Barsotti, A. Chicas, W. Li, A. Polotskaia, M.J. Bissell, T.F. Osborne, B. Tian, S.W. Lowe, J.M. Silva, A.L. Borresen-Dale, A.J. Levine, J. Bargonetti, and C. Prives, “Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway,” Cell, vol. 148, no. 1-2, pp.244-258, 2012.
[30] S. Weissmueller, E. Manchado, M. Saborowski, J.P.t. Morris, E. Wagenblast, C.A. Davis, S.H. Moon, N.T. Pfister, D.F. Tschaharganeh, T. Kitzing, D. Aust, E.K. Markert, J. Wu, S.M. Grimmond, C. Pilarsky, C. Prives, A.V. Biankin, and S.W. Lowe, “Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor beta signaling,” Cell, vol. 157, no. 2, pp.382-394, 2014.
[31] M. Subramanian, P. Francis, S. Bilke, X.L. Li, T. Hara, X. Lu, M.F. Jones, R.L. Walker, Y. Zhu, M. Pineda, C. Lee, L. Varanasi, Y. Yang, L.A. Martinez, J. Luo, S. Ambs, S. Sharma, L.M. Wakefield, P.S. Meltzer, and A. Lal, “A mutant p53/let-7i-axis-regulated gene network drives cell migration, invasion and metastasis,” Oncogene, vol. 34, no. 9, pp.1094-1104, 2015.
[32] P.M. Do, L. Varanasi, S. Fan, C. Li, I. Kubacka, V. Newman, K. Chauhan, S.R. Daniels, M. Boccetta, M.R. Garrett, R. Li, and L.A. Martinez, “Mutant p53 cooperates with ETS2 to promote etoposide resistance,” Genes & development, vol. 26, no. 8, pp.830-845, 2012.
[33] M.J. Scian, K.E. Stagliano, M.A. Ellis, S. Hassan, M. Bowman, M.F. Miles, S.P. Deb, and S. Deb, “Modulation of gene expression by tumor-derived p53 mutants,” Cancer research, vol. 64, no. 20, pp.7447-7454, 2004.
[34] S. Garritano, A. Inga, F. Gemignani, and S. Landi, “More targets, more pathways and more clues for mutant p53,” Oncogenesis, vol. 2, no. p.e54, 2013.
[35] M.A. Dawson, and T. Kouzarides, “Cancer epigenetics: from mechanism to therapy,” Cell, vol. 150, no. 1, pp.12-27, 2012.
[36] W.L. Tam, and R.A. Weinberg, “The epigenetics of epithelial-mesenchymal plasticity in cancer,” Nature medicine, vol. 19, no. 11, pp.1438-1449, 2013.
[37] B. Li, M. Carey, and J.L. Workman, “The role of chromatin during transcription,” Cell, vol. 128, no. 4, pp.707-719, 2007.
[38] T. Kouzarides, “Chromatin modifications and their function,” Cell, vol. 128, no. 4, pp.693-705, 2007.
[39] J. Zhu, M.A. Sammons, G. Donahue, Z. Dou, M. Vedadi, M. Getlik, D. Barsyte-Lovejoy, R. Al-awar, B.W. Katona, A. Shilatifard, J. Huang, X. Hua, C.H. Arrowsmith, and S.L. Berger, “Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth,” Nature, vol. 525, no. 7568, pp.206-211, 2015.
[40] S. Rokudai, Y. Aikawa, Y. Tagata, N. Tsuchida, Y. Taya, and I. Kitabayashi, “Monocytic leukemia zinc finger (MOZ) interacts with p53 to induce p21 expression and cell-cycle arrest,” Journal of Biological Chemistry, vol. 284, no. 1, pp.237-244, 2009.
[41] S. Rokudai, O. Laptenko, S.M. Arnal, Y. Taya, I. Kitabayashi, and C. Prives, “MOZ increases p53 acetylation and premature senescence through its complex formation with PML,” Proceedings of the National Academy of Sciences, vol. 110, no. 10, pp.3895-3900, 2013.
[42] M.C. Venanzoni, L.R. Robinson, D.R. Hodge, I. Kola, and A. Seth, “ETS1 and ETS2 in p53 regulation: spatial separation of ETS binding sites (EBS) modulate protein: DNA interaction,” Oncogene, vol. 12, no. 6, pp.1199-1204, 1996.
[43] M. Hollstein, D. Sidransky, B. Vogelstein, and C.C. Harris, “p53 mutations in human cancers,” Science, vol. 253, no. 5015, pp.49-54, 1991.
[44] A. Valouev, D.S. Johnson, A. Sundquist, C. Medina, E. Anton, S. Batzoglou, R.M. Myers, and A. Sidow, “Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data,” Nature methods, vol. 5, no. 9, pp.829-834, 2008.
[45] P.J. Park, “ChIP–seq: advantages and challenges of a maturing technology,” Nature Reviews Genetics, vol. 10, no. 10, pp.669-680, 2009.
[46] A. Visel, M.J. Blow, Z. Li, T. Zhang, J.A. Akiyama, A. Holt, I. Plajzer-Frick, M. Shoukry, C. Wright, and F. Chen, “ChIP-seq accurately predicts tissue-specific activity of enhancers,” Nature, vol. 457, no. 7231, pp.854-858, 2009.
[47] Y. Zhang, T. Liu, C.A. Meyer, J. Eeckhoute, D.S. Johnson, B.E. Bernstein, C. Nusbaum, R.M. Myers, M. Brown, and W. Li, “Model-based analysis of ChIP-Seq (MACS),” Genome biology, vol. 9, no. 9, p.R137, 2008.
[48] J.-C. Wang, M.K. Derynck, D.F. Nonaka, D.B. Khodabakhsh, C. Haqq, and K.R. Yamamoto, “Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 44, pp.15603-15608, 2004.
[49] T.I. Lee, S.E. Johnstone, and R.A. Young, “Chromatin immunoprecipitation and microarray-based analysis of protein location,” Nature protocols, vol. 1, no. 2, pp.729-748, 2006.
[50] M.L. Metzker, “Sequencing technologies—the next generation,” Nature reviews genetics, vol. 11, no. 1, pp.31-46, 2010.
[51] O. Morozova, and M.A. Marra, “Applications of next-generation sequencing technologies in functional genomics,” Genomics, vol. 92, no. 5, pp.255-264, 2008.
[52] J. Shendure, R.D. Mitra, C. Varma, and G.M. Church, “Advanced sequencing technologies: methods and goals,” Nature Reviews Genetics, vol. 5, no. 5, pp.335-344, 2004.
校內:2019-07-01公開