簡易檢索 / 詳目顯示

研究生: 簡亞倫
Jian, Ya-lun
論文名稱: 在演算法階層藉由多目標基因演算法以降低能量消耗導向之硬體分割方法
Energy-Aware Hardware Partitioning Method at Algorithmic Level Using Multi-Objective Genetic Algorithm
指導教授: 邱瀝毅
Chiou, Lih-yih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 67
中文關鍵詞: 系統階層探勘多目標最佳化功能性分割柏拉圖最佳化低功率
外文關鍵詞: Multi-objective optimization, Functional partitioning, Low power, System-level exploration, Pareto optimality
相關次數: 點閱:103下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今半導體製程技術進入奈米世代,單一晶片電晶體的密度也愈來愈高,使用者對於電子產品功能性的要求也日益增加。因此,功能強大的手持式設備也隨之出現。但手持式設備以電池為供應電源,使用時間受限於有限的能量。因此,唯有藉由降低系統的能量消耗或增加電池的容量,進而延長設備的使用時間。我們提出一個以降低能量消耗導向之硬體分割方法,在系統設計初期階段提前考慮系統能量消耗的議題,有較大探索空間且有較多機會節省較多的能量消耗。
    實驗結果顯示出我們所提出的硬體分割方法與窮盡式演算法得到的結果非常相近。除此之外,我們使用Verilog配合我們使用提出的方法產生的結果在邏輯層次實現數個測試範例,其平均功率消耗的確較原始的設計來得小,結果證明我們提出的方法是有效的。

    The advancement of semiconductor process technology enables more and more functions integrated onto a single chip to satisfy the ever increasing appetite of the consumers. Unfortunately, the operating time of such portable systems is limited by the battery capacity that supplies the electricity to the system. The only ways to lengthen the operating time is to either lower system energy consumption or increase the battery capacity. We propose an energy-aware hardware partitioning method at algorithmic level. The energy consumption issue is taken into accounts at the early design stage. The larger solution space can be explored, the greater chances energy consumption can be saved.
    The experimental results showed that the best solution found by the proposed method is very close to the solution found by the exhaustive search. We also validate the proposed method with several benchmarks at gate level and their average power consumption is indeed lower than that of their respective original designs.

    圖目錄 vi 表目錄 ix 第 1 章 緒論 1 1.1 研究動機 1 1.2 系統功率消耗的來源 3 1.3 研究貢獻 3 1.4 論文架構 4 第 2 章 相關背景 5 2.1 硬體分割演算法及功率最佳化 5 2.2 排程及資源指定演算法 8 2.3 多目標基因演算法 15 第 3 章 相關工作與文獻探討 19 3.1 針對多目標進行分割 19 3.2 針對功率管理機制進行分割 20 3.3 相關工作與文獻探討之摘要 24 第 4 章 提出的方法 25 4.1 問題定義 25 4.2 簡介:提出的方法 26 4.3 前置處理與語法分析器 (Pre-Processing and Parsing) 28 4.4 運算層級的處理程序 (Operation-Level Procedure) 32 4.5 區塊層級的處理程序 (Block-Level Procedure) 34 4.6 硬體分割演算法:運用多目標基因演算法 36 第 5 章 實驗結果與分析 39 5.1 實驗結果 39 5.1.1 測試範例 (I): 影像放大器 40 5.1.2 測試範例 (II): 語音用途的小波轉換 43 5.2 假設的驗證:針對系統閒置時間進行最佳化 46 5.3 實驗結果的驗證 52 第 6 章 結論與未來展望 55 6.1 結論 55 6.2 未來展望 56 參考文獻 57 附錄 61

    [1] J. M. Rabaey, Digital Integrated Circuits: a Design Perspective: Prentice-Hall, Inc., 1996.
    [2] P. Bennet, “The Why, Where and What of Low-Power SoC Design,” EETimes, 2004.
    [3] TSMC, "TSMC Reference Flow 8.0," 2008.
    [4] B. W. Kernighan and S. Lin, "An Efficient Heuristic Procedure for Partitioning Graphs," Bell System Technical Journal, vol. 49, pp. 291-307, 1970.
    [5] C. M. Fiduccia and R. M. Mattheyses, "A Linear-Time Heuristic for Improving Network Partitions," in Proc. of the 19th Conference on Design Automation, pp. 175-181, 1982.
    [6] W. K. Mak and D. F. Wong, "Minimum Replication Min-Cut Partitioning," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol.16, no.10, pp.1221-1227, 1997
    [7] A. G. Steenbeek, E. Marchiori, A. E. Eiben, and A. Cwi, "Finding Balanced Graph Bi-Partitions using a Hybrid Genetic Algorithm," in Proc. of IEEE International Conference on Evolutionary Computation, pp. 90-95, 1998.
    [8] B. Thang Nguyen and M. Byung-Ro, "GRCA: a Hybrid Genetic Algorithm for Circuit Ratio-Cut Partitioning," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol.17, no.3, pp.193-204, 1998.
    [9] A. Yodtean and P. Chantngarm, "Hybrid Algorithm for Bisection Circuit Partitioning," IEEE Region 10 Conference, pp. 324-327, 2004.
    [10] A. Stammermann, L. Kruse, W. Nebel, A. Pratsch, E. Schmidt, M. Schulte, and A. Schulz, "System Level Optimization and Design Space Exploration for Low Power," in Proc. of the 14th International Symposium on Systems Synthesis, pp. 142-146, 2001.
    [11] E. Hwang, F. Vahid, and Y. C. Hsu, "FSMD Functional Partitioning for Low Power," in Proc. of Conference on Design, Automation and Test in Europe, 1999.
    [12] F. Vahid and D. D. Gajski, "Specification Partitioning for System Design," in Proc. of the 29th ACM/IEEE Conference on Design Automation, pp. 219-224, 1992.
    [13] P. Ghafari, E. Mirhadi, M. Anis, A. Areibi, and M. A. E. M. Elmasry, "A Low-Power Partitioning Methodology by Maximizing Sleep Time and Minimizing Cut Nets," in Proc. of International Workshop on System-on-Chip for Real-Time Applications, pp. 368-371, 2005.
    [14] J. Kawa, "Low Power and Power Management for CMOS: An EDA Perspective," IEEE Trans. on Electron Devices, vol.55, no.1, pp.186-196, Jan. 2008.
    [15] M. Giovanni De, “Synthesis and Optimization of Digital Circuits”, McGraw-Hill Higher Education, 1994.
    [16] P. G. Paulin and J. P. Knight, "Force-Directed Scheduling for the Behavioral Synthesis of ASICs," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol.8, no.6, pp.661-679, 1989.
    [17] R. T. Marler and J. S. Arora, "Survey of Multi-Objective Optimization Methods for Engineering," Structural and Multidisciplinary Optimization, vol. 26, pp. 369-395, 2004.
    [18] J. D. Schaffer, "Multiple Objective Optimization with Vector Evaluated Genetic Algorithms," in Proc. of the 1st International Conference on Genetic Algorithms, pp. 93-100, 1985.
    [19] J. Knowles and D. Corne, "The Pareto Archived Evolution Strategy: a New Baseline Algorithm for Pareto Multi-Objective Optimization," in Proc. of Congress on Evolutionary Computation, vol.1, pp.-105, 1999.
    [20] E. Zitzler and L. Thiele, "Multi-Objective Evolutionary Algorithms: a Comparative Case Study and the Strength Pareto Approach," IEEE Trans. on Evolutionary Computation, vol.3, no.4, pp.257-271, 1999.
    [21] N. Srinivas and K. Deb, "Multi-Objective Optimization Using Non-dominated Sorting in Genetic Algorithms," IEEE Trans. on Evolutionary Computation, vol.2, no.3, pp. 221-248, 1994.
    [22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II," IEEE Trans. on Evolutionary Computation, vol.6, no.2, pp.182-197, 2002.
    [23] D. E. Goldberg and J. Richardson, "Genetic Algorithms with Sharing for Multimodal Function Optimization," in Proc. of the Second International Conference on Genetic Algorithms on Genetic algorithms and their application pp. 41-49, 1987.
    [24] J. Horn, N. Nafpliotis, and D. E. Goldberg, "A Niched Pareto Genetic Algorithm for Multi-Objective Optimization," in Proc. of the First IEEE Conference on Evolutionary Computation, pp. 82-87, 1994.
    [25] K. Sastry, "Single and Multi-objective GA Toolbox in C++," IlliGAL Report No. 2007017, June 2007.
    [26] A. H. Farrahi and M. Sarrafzadeh, "System Partitioning to Maximize Sleep Time," in Proc. of the IEEE/ACM International Conference on Computer-Aided Design, pp. 452-455, 1995.
    [27] J. Li, L. Behjat, and A. Kennings, "Net Cluster: A Net-Reduction-Based Clustering Preprocessing Algorithm for Partitioning and Placement," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol.26, no.4, pp.669-679, 2007.
    [28] C.-W. Su, "Power-Management Aware Hardware Partitioning Methods at Algorithmic Level," Thesis for Master of Science, Department of Electrical Engineering, National Cheng-Kung University, Tainan, Taiwan, July 2007.
    [29] D. Dal, D. Kutagulla, A. Nunez, and N. A. M. N. Mansouri, "Power Islands: a High-Level Synthesis Technique for Reducing Spurious Switching Activity and Leakage," in Proc. of International Midwest Symposium on Circuits and Systems, pp. 1875-1879, vol. 2, 2005.
    [30] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, "SPARK: a High-Level Synthesis Framework for Applying Parallelizing Compiler Transformations," in Proc. of the 16th International Conference on VLSI Design, pp. 461-466, 2003.
    [31] P.-H. Yang, "Interconnection-Aware Register Transfer Level Partitioning for Low-Power Datapath," Thesis for Master of Science, Department of Electrical Engineering, National Cheng-Kung University, Tainan, Taiwan, Jan. 2006.
    [32] F. Emnett and M. Biegel, "Power Reduction through RTL Clock Gating," Synopsys Users Group, San Jose, vol. 66, 2000.

    下載圖示 校內:2011-08-14公開
    校外:2011-08-14公開
    QR CODE