| 研究生: |
黃珍鈺 Huang, Chen-Yu |
|---|---|
| 論文名稱: |
開罐姿勢對手指生物力學模式之影響 Postural Effects on Jar Opening - Biomechanical Aspects |
| 指導教授: |
蘇芳慶
Su, Fong-Chin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 開罐姿勢 、指外力 、肌腱力量 、關節受力 |
| 外文關鍵詞: | jar open posture, fingertip force, tendon force, joint force |
| 相關次數: | 點閱:152 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多年青人對於開罐動作是有困難的。雖然過去的研究曾經探討身體姿勢對開罐的影響,但這些研究大多是針對單隻手指的表現或在手指抓握位置和上肢受限制的情況下所得到的結果。在受試者可以使用自由、自然上肢動作和手指抓握位置的情況下,進一步去分析手指間的協調功能是有必要的。本論文的研究目的是在上述的前提下,來分析開罐姿勢對於右手手指之間的外力協調模式、拇指和食指單一手指內部關節受力和肌肉肌腱力量的影響。
本論文使用了兩個主要的器材。一個是模仿市面上常見到的罐子模擬器,用來收集右手手指施力於罐蓋上的指尖力量和力矩。另ㄧ個是具有8台攝影鏡頭的3D 動態分析系統(HiRes Expert VisionTM),用以建立罐子模擬器和手指關節中心的座標系。並進一步將兩系統的資料同步化後,計算拇指和食指的內部關節受力和肌肉肌腱力量。共有四個次主題來探討開罐姿勢的影響:(1)探討右手拇指、食指-中指、無名指-小指,三個手指群的指外力協調模式在站立的2種開罐姿勢下的差異,(2)探討右手拇指、食指、中指-無名指-小指,三個手指群的指外力協調模式,(3)拇指內部力量協調模式,以及(4)食指內部力量協調模式,在坐姿的3種開罐姿勢下的差異。
研究結果顯示,在開罐動作中每個手指群除了提供足夠的抓握力量以避免手指滑動外,也貢獻了扭轉力矩來打開罐子。雖然在第一和第二次主題中,正向力分別是切線力的 1.82~3.54 和 3.02-3.36 倍,但改變開罐姿勢並不會對正向力與切線力的比值造成影響。自由的上肢協調作用和良好雙手運用對開罐動作是很重要的。不管是在站立、坐姿、或在不同的手指分群情形下,Off-table或Free-way開罐姿勢能夠產生較有效益的開罐力量和總力矩。在次主題(1)中,拇指在Vertical開罐姿勢中可以產生較大的切線力、總合力和力矩貢獻度。站立時,食指-中指群和無名指-小指群的力矩貢獻度是拇指的1.39~2.50倍。在2種開罐姿勢中,食指-中指群的力矩貢獻度是差不多的,拇指在Vertical姿勢有較大的力矩貢獻度(26%> 21%),而無名指-小指群在Free-way姿勢有較大的力矩貢獻度(42%> 35%)。相反的,在次主題(2)中,拇指在Off-table姿勢可產生較大的力量。在三種開罐姿勢中,拇指的力矩貢獻度都是最大的,再來是中指-無名指-小指群,最小的是食指。食指和中指-無名指-小指群的力矩貢獻度是拇指的0.56~0.96倍。因此,由上述結果可知,Free-way (Off-table)開罐姿勢對於年輕族群而言是較好的開罐動作策略。
開罐姿勢對拇指和食指內部結構力量的影響研究結果顯示,所有拇指和食指的肌肉肌腱都有施力,然而肌肉肌腱力量相對於指外力或開罐姿勢而言,並非線性關係。開罐姿勢會影響食指的PIP關節屈曲、MP關節外展角度和拇指的CMC關節外展角度。在任一種姿勢下,CMC關節的受力都是最大的。肌肉肌腱合力和所有的關節受力都遠大於指外力。開罐動作中拇指和食指的肌肉肌腱協調模式分別是FPL> OPP> FPB> ADP 和 FDP> RI> FDS。
總結而言,右手手指之間的外力和內部結構力量協調模式會因為使用不同的開罐姿勢而改變。本論文的研究結果可以提供年輕人更有效益的開罐姿勢建議,並進一步作為臨床治療、擬定訓練活動、人工關節和機器手臂設計的知識基礎。在未來的研究中,需進一步增加罐蓋上的力量感應器以釐清五個手指的生物力學表現和協調模式。另外,其它如collateral ligament 和 pulley的軟組織也可能會影響肌肉肌腱的施力和力量傳遞,可將這些組織置入力學模型之中。
Many young adults have difficulty opening jars. Although previous studies have attempted to clarify the body posture effect during such a task, the experiments in them focused on a single digit or actions with unnatural finger positions, and were further restricted to upper extremity postures. A further study is required to investigate the fingers’ coordination, as well as each subject’s natural and self-selected upper extremity posture and finger grasp location when opening a jar. The object of this study is to analyze the external and internal force coordination and torque contribution among the thumb and fingers during jar opening movement, moreover, to compare their difference for the opening posture effect.
There are two major apparatuses used in this study. One is the valid jar simulator fabricated as a common selling container. It is designed for collecting the external fingertip forces and torques of the subjects’ right hand fingers. The other apparatus, the video-based motion analysis system adopted the 3D HiRes Expert VisionTM and consisted of 8 CCD cameras was used for constructing the 3D coordinated systems of the jar lid and the fingers, and computing the finger joint orientation. Data of the two systems were further synchronized for calculating the internal tendon and joint force of the thumb and index finger.
A self-selected finger position and free-arm posture of each subject were allowed. The opening posture effect on four projects, (1) the fingertip force coordination of the thumb, the index-middle finger group and the ring-little finger group in standing among two open postures, (2) the fingertip force coordination of the thumb, the index finger and the middle-ring-little finger group in sitting, (3) the internal generation of the thumb, and (4) the internal generation of the index finger for three open postures, were analyzed, respectively.
The results sowed that each finger group not only provided enough grasping force to avoid finger slipping, but also contributed twist torque to open a jar. Although the normal forces were 1.82~3.54 and 3.02-3.36 times the tangential forces for project (1) and (2), respectively, the jar holding postures did not alter the normal force to tangential force ratio of each finger group. The free arm coordination and the bilateral hand using were important to open a jar. The off-table or free-way posture could produced the most effective force, no matter whether the subjects were standing, sitting or any type of finger group was defined. In project (1), the thumb produced greater tangential, resultant forces and had greater torque contribution for the vertical opening posture. The torque contributions of the index-middle and ring-little finger groups were 1.39~2.50 times that of the thumb when the subject was standing to open a jar. The index-middle finger group had similar torque contributions for both postures. The torque contribution of the thumb increased (26% and 21% for vertical and free-way posture, respectively), while the ring-little finger group torque contribution decreased (35% and 42% for vertical and free-way posture, respectively) in the vertical opening posture. Despite this, the thumb exerted the greatest force for the off-table posture in project (2). The thumb had the greatest torque contribution for the three postures, followed by that of the middle-ring-little finger group, and the lowest contribution of the index finger. The torque contribution of the index finger and the middle-ring-little finger group were 0.56~0.96 times that of the thumb. Each finger group had approximate contributions for the three postures. As such, the free-way (off-table) opening posture is the better strategy for young adults to open a jar.
The posture effect on the internal generation of the thumb and index finger showed that all muscles and tendons in each produced forces for such an opening task, whereas the muscle force was not in a linear relationship depending on the fingertip force and opening posture. There was opening posture effect on the PIP joint flexion and MP joint abduction of the index finger, and the CMC joint abduction of the thumb. The CMC joint had the maximal load rather than the IP and MP joints for the three opening postures. Both the all muscle force and joint compression force were much larger than the fingertip force for both fingers. The muscle and tendon generation patterns during jar opening were FPL> OPP> FPB> ADP and FDP> RI> FDS for the thumb and index finger, respectively.
In contrary, the thumb and fingers coordinated in different pattern when altering the opening posture. The results might be able to help young people successfully complete the jar open task, and further to serve as a knowledge basis for the clinical treatment, protocol of training activity, design of the artificial joint and robot hand. Other soft tissues like the collateral ligament and pulley may influence the muscle and tendon force production and transmission. Those should be recruited and the forces of the five fingers need to be clarified in future studies.
Amis, A. A. (1987). Variation of Finger Forces in Maximal Isometric Grasp Tests on a Range of Cylinder Diameters. Journal of Biomedical Engineering, 9(4), 313-320.
An, K. N., Chao, E. Y. S., & Kaufman, K. R. (1991). Basic Orthopaedics Biomechanics (Eds ed.). New York: Raven Press Ltd.
An, K. N., Chao, E. Y., Cooney III, W. P., & Linscheid, R. L. (1979). Normative model of human hand for biomechanical analysis. Journal of Biomechanics, 12, 775-788.
Aulicino, P. L. (1981). Clinical examination of the hand. Philadelphia: In: Tubiana, R.
Barr, E. A., & Lehman-B, J. (2001). Basic Biomechanics of the Musculoskeletal System: J. Butler.
Bhargava, A. S., Eapen, C., Kumar, S. P. (2010). Grip strength measurements at two different wrist extension positions in chronic lateral epicondylitis-comparison of involved vs. uninvolved side in athletes and non athletes: a case-control study. Sports Medicine Arthrosc Rehabilitation Therapy, 2:22.
Brand, P. W., Beach, R. B., & Thompson, D. E. (1981). Relative tension and potential excursion of muscles in the forearm and hand. Journal of Hand Surgery American, 6, 209-219.
Bridgman, G. B. (1973). The thumb. Constructive anatomy. pp26-31. Inc. New York : Sterling Publishing Company. USA.
Brook, N., Mizrahit, J., Shoham, M., & Dayan, J. (1995). A biomechanical model of index finger dynamics. Med. Eng. Phys., 17, 54-63.
Brouwer, A. M., Franz, V. H., & Gegenfurtner, K. R. (2009). Differences in fixations between grasping and viewing objects. Journal of Vision, 9(1):18, 1-24.
Buckley M. A., Yardley A., Johnson G. R. & Cams D. A. (1996). Dynamics of the upper limb during performance of the tasks of everyday living-a review of the current knowledge base. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 210-241
Burgar, C. G., Valero-Cuevas, F. J., & Hentz, V. R. (1997). Improving selectivity of bone-wire electrode placement for kinesiological and clinical studies: Application to index finger musculature. American Journal of Physics Medical Rehabilican, 76, 1-9.
Cailliet, R. (1994). Hand pain and impairment (4th ed.). Philadelphia: F.A. Davis.
Carrozza, M. C., Cappiello, G., Micera, S., & Edin, B. B., Beccai, L., & Cipriani, C. (2006). Design of a cybernetic hand for perception and action. Biol Cybern, 95, 629-644.
Carus, D. A., Grant, C., Wattie, R., & Pridham, M. S. (2006). Development and validation of a technique to measure and compare the opening characteristics of tamper-evident bottle closures. Packaging Technology and Science, 19(2), 105-118.
Cavina-Pratesi, C. & Hesse, C. (2013). Why do the eyes prefer the index finger? Simultaneous recording of eye and hand movements during precision grasping. Journal of Vision, 13(5):15, 1–15.
Chabran, E., Maton, B., Ribreau, C., & Fourment, A. (2001). Electromyographic and biomechanical characteristics of segmental postural adjustments associated with voluntary wrist movements-influence of an elbow support. Experimental Brain Reserch, 141, 133-145.
Chao, E. Y., Opgrande, J. D., & Axmear, F. E. (1976). Three-dimensional force analysis of finger joints in selected isometric hand functions. Journal of Biomechanics, 9, 387-396.
Chao, Y. S., An, K. N., Cooney III, W. P., & Linscheid, R. L. (1989). Biomechanics of the Hand: a basic research study. Singapore: World Scientific.
Chang, J. H., Ho, K. Y., & Su, F. C. (2008). Kinetic analysis of the thumb in jar-opening activity among female adults. Ergonomics, 51:843-857.
Cooney, W. P. 3rd, & Chao, E. Y. (1977). Biomechanical analysis of static forces in the thumb during hand function. Journal of Bone & Joint Surgery American, 59(1), 27-36.
Cooney, W. P. 3rd, An, K. N. & Daube, J. R. (1985). Electromyographic analysis of the thumb: a study of isometric forces in pinch and grasp. J Hand Surg Am 10, 202–210.
Crawford, J. O., Wanibe, E., & Nayak, L. (2002). The interaction between lid diameter, height and shape on wrist torque exertion in younger and older adults. Ergonomics, 45(13), 922-933.
Darling, W. G., Cole, K. J., & Miller, G. F. (1994). Coordination of index finger movements. Journal of Biomechanics, 27(4), 479-491.
Dennerlein, J. T., Diao, E., Jr, C. D. M., & Rempel, D. M. (1998). Tensions of the flexor digitorum superficialis are higher than a current model predicts. Journal of Biomechanics, 31, 295-301.
Dennerlein, J. T., Diao, E., Mote Jr., C. D., & Rempel, D. M. (1999). In vivo finger flexor tendon force while tapping on a keyswitch. Journal of Orthopaedic Research, 17(2), 178-184.
Department of Trade and Industry (DTI). Consumer Safety Research. In Domestic Accidents Related to Packaging, Vol 1, Domestic Accidents Involving Glass. DTI: London, November 1997.
Domalain, M., Vigouroux, L., Danion, F., Sevrez, V. & Berton, E. (2008). Effect of object width on precision grip force and finger posture. Ergonomics, 51(9), 1441-1453.
DTI. (1999a). Assessment of Broad Age-related Issues for Package Opening. URN 99/621. In: INDUSTRY DOTA, ed. London: DEPARTMENT OF TRADE AND INDUSTRY
DTI., (1999b). Report. Assessment of problems related to package size. Commissioned by the consumer affairs directorate, March 1999. (www.Dti.Goc.Uk/homesafetynetwork/pg_rsize.Htm).
DTI. (2000). Strength Data for Design Safety – Phase 1. Consumer Safety Research Adultdata. Dti: London, October 2000.
Dul, J., Johnson, G. E., Shiavi, R., & Townsend, M. A. (1984). Muscular synergism—ii. A minimum-fatigue criterion for load sharing between synergistic muscles. Journal of Biomechanics, 17(9), 675-684.
Dumont, C. E., Popovic, M. R., Keller, T., & Sheikh, R. (2006). Dynamic force-sharing in multi-digit task. Clinical Biomechanics, 21(2), 138-146.
Epstein, M., & Herzog, W. (1998). Theoretical Models of Skeletal Muscle (first ed.). New York: Wiley.
Feehan, L. M., & Beauchene, J. G. (1990). Early controlled passive motion versus postoperative immobilization. Journal of Hand Surgery 15A, 63-68.
Flanagan, J. R., Burstedt, M. K., & Johansson, R. S. (1999). Control of fingertip forces in multidigit manipulation. J Neurophysiol, 81(4), 1706-1717.
Fong, P. W. & Ng, G.. Y. (2001). Effect of wrist positioning on the repeatability and strength of power grip. American Journal of Occupational Therapy, 55, 212–216.
Fowler, N. K., & Nicol, A. C. (1999a). A force transducer to measure individual finger loads during activities of daily living. Journal of Biomechanics, 32(7), 721-725.
Fowler, N. K., & Nicol, A. C. (1999b). Measurement of external three-dimensional interphalangeal loads applied during activities of daily living. Clinical Biomechanics, 14(9), 646-652.
Fowler, N. K., & Nicol, A. C. (2000). Interphalangeal joint and tendon forces: normal model and biomechanical consequences of surgical reconstruction. Journal of Biomechanics, 33, 1055-1062.
Fowler, N. K., & Nicol, A. C. (2001). Functional and biomechanical assessment of the normal and rheumatoid hand. Clinical Biomechanics, 16(8), 660-666.
Fowler, N. K., Nicol, A. C., Condor, B., & HadleysProc, D. (2000). In-Vivo Index Finger Moment Arms and Tendon Lines of Action from High-Resolution MRI. Proc. Intl. Sot. Mag. Reson. Med. , 8, 2098.
Freund, J., Toivonen, R., & Takala, E. P. (2002). Grip forces of the fingertips. Clinical Biomechanics, 17, 515-520.
Galloway J. C. & •Koshland G. F. (2002). General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements. Exp Brain Res 142, 163–180.
Garcia-Elias, M., An, K. N., Berglund, L., Linscheid, R. L., Cooney, r., W. P. , & Chao, E. Y. (1991). Extensor mechanism of the fingers. I. A quantitative geometric study. Journal of Hand Surgery(American), 16, 1130-1136.
Gerard, M. J., Armstrong, T. J., Franzblau, A., Martin, B. J., & Rempel, D. M. (1999). The effects of keyswitch stiffness on typing force, finger electromyography, and subjective discomfort. American Industrial Hygiene Association Journal, 60(6), 762-769.
Goehler, C. M. & Murray, W. M. (2010). The sensitivity of endpoint forces produced by the extrinsic muscles of the thumb to posture. Journal of Biomechanics 43, 1553–1559.
Haque, S., Khan, A. A. (2009). Effects of ulnar deviation of the wrist combined with flexion/extension on the maximum voluntary contraction of grip. Journal of Human Ergology, Tokyo, 38(1):1-9.
Harding, D. C., Brandt, K. D., & Hillberry, B. M. (1993). Finger joint force minimization in pianists using optimization techniques. Journal of Biomechanics, 26, 1403-1412.
Herrington, L., Malloy, S., & Richards, J. (2005). The effect of patella taping on vastus medialis oblique and vastus laterialis EMG activity and knee kinematic variables during stair descent. J Electromyogr Kinesiol, 15, 604-607.
Hirose, S., & Umetani, Y. (1978). The development of soft gripper far the versatile robot hand. Mech Mach Theory, 13, 351-358.
Ho, K. Y. (2004). Biomechanical analysis of the thumb during jar opening. National Cheng Kung University, Tainan, Taiwan.
Huang, C.Y., Kuo, L.C., Chang, S.K., & Su, F.C. (2012). Comparison of kinetic roles of digits in different jar twisting direction among young female . Journal of Medical and Biological Engineering. (SCI Impact factor: 0.731)
Huang, C.Y., Kuo, L.C., Tseng, H.Y., & Su, F.C. (2013). The effect of jar holding posture on finger force and torque during a jar-opening task for young females. Packaging Technology and Science, Published online, 9 MAY 2013, DOI: 10.1002/pts.2031. (SCI Impact factor: 1.013)
Johanson, M. E., Valero-Cuevas, F. J., & Hentz, V. R. (2001). Activation patterns of the thumb muscles during stable and unstable pinch tasks. Journal of Hand Surgery, 26, 698-705.
Jung, M. C. & Hallbeck, M. S. (2002). The effect of wrist position, angular velocity, and exertion direction on simultaneous maximal grip force and wrist torque under the isokinetic conditions. International Journal of Industrial Ergonomics, 29, 133–143.
Kattel, B. P., Fredericks, T. K., Fernandez, J. E., & Lee, D. C. (1996). The effect of upper-extremity posture on maximum grip strength. Int. J. Ind. Ergon., 18, 423-429.
Kaufman, K. R., An, K. N., Litchy, W. J., Cooney, I. W. P., & Chao, E. Y. (1999). In-vivo function of the thumb muscles. Clinical Biomechanics, 14, 141-150.
Kilbreath, S. L., & Gandevia, S. C. (1994). Limited independent flexion of the thumb and fingers in human subjects. Journal of Physiology, 479, 487-497.
Kuo, L. C., Chang, J. H., Lin, C. F., Hsu, H. Y., Ho, K. Y. & Su, F. C. (2009). Jar-opening challenges. Part 2: estimating the force-generating capacity of thumb muscles in healthy young adults during jar-opening tasks. Proceedings of the Institution of Mechanical Engineers. Part H - Journal of Engineering in Medicine, 223(5), 577-588.
Kursa, K., Diao, E., Lattanza, L., & Rempel, D. (2005). In vivo forces generated by finger flexor muscles do not depend on the rate of fingertip loading during an isometric task. Journal of Biomechanics, 38(11), 2288-2293.
Lamoreaux, L., & Hoffer, M. M. (1995). The effect of wrist deviation on grip and pinch strength. Clin. Orthop. Relat. Res., 314, 152-155.
Landsmeer, J. M. F. (1961). Study in the anatomy of articulation. The equilibrium of the 'intercalated' bone. Acta morph. Neerl.-scand. , 3, 287-303.
Landsmeer, J. M. F. (1962). Power grip and precision handling. Ann Rheum Dis, 21, 164.
Langley, J., Janson, R., J., W., & Yoxall, A. (2005). Inclusive design for containers: Improving openability. Packag. Technol. Sci. , 18, 285-293.
Latash, M. L., Scholz, J. P., & Schoner, G. (2002a). Motor control strategies revealed in the structure of motor variability. Exerc. Sport Sci. , 30, 26-31.
Latash, M. L., Scholz, J. P., Danion, F., & Schoner, G. (2002b). Finger coordination during discrete and oscillatory force production tasks. Exp. Brain Res., 146, 412-432.
Lee, S. J., Kong, Y. K., Lowe, B. D. & Song, S. (2009). Handle grip span for optimizing finger-specific force capability as a function of hand size. Ergonomics, 52(5):601-608.
Lee, S. W., Joseph , H. C., Derek, D. T., & Kamper, G. (2008). Effect of Finger Posture on the Tendon Force Distribution within the Finger Extensor Mechanism. Journal of Biomechanical Engineering, 130. 051014-1-9.
Li, Z.-M., Latash, M. L., & Zatsiorsky, V. M. (1998). Force sharing among fingers as a model of the redundancy problem. Experimental Brain Research, 119, 276-286.
Li, Z.-M., Zatsiorsky, V. M., & Latash, M. L. (2001). The effect of finger extensor mechanism on the flexor force during isometric tasks. Journal of Biomechanics 34, 1097-1102.
Li, Z.-M. & Yue, G. H. (2002). Dependence of finger flexion force on the posture of the nonperforming fingers during key pressing tasks. Journal of Motor Behavior, 34(4), 329-338.
Li, Z.-M., Tang, J., Chakan, M. & Kaz, R. (2008). Complex, multidimensional thumb movements Generated by Individual Extrinsic Muscles. Journal of Orthopaedic Research, September, 1289-1295.
Lieber, R. L., Silva, M. J., Amiel, D., & Gelberman, R. H. (1999). Wrist and digital joint motion produce unique flexor tendon force and excursion in the canine forelimb. Journal of Biomechanics, 32, 175-181.
Long, C. (1968). Intrinsic-extrinsic muscle control of the fingers. J Bone Joint Surg, 50A, 973.
Long, C., Conrad, P. W., Hall, E. L., & Furler, S. L. (1970). Intrinsicextrinsic muscle control of the hand in power grip and precision handling. J Bone and Joint Surgery, 52A, 853-867.
Luker, K. R., Aguinaldo, A., Kenney, D., Cahill-Rowley, K., & Ladd, A. L. (2013). Functional Task Kinematics of the Thumb Carpometacarpal Joint. Clinical Orthopaedics and Related Research, DOI 10.1007/s11999-013-2964-0. (Published online 03 Apirl, 2013)
Maier, M. A., & Hepp-Reymond, M. C. (1995). EMG activation pattern during force production in precision grip. Experimental Brain Research, 103, 108-122.
Mason, C. R., Gomez, J. E., & Ebner, T. J. (2001). Hand synergies during reach-to-grasp. J Neurophysiol 86, 2896-2910.
Miller, M. C., Nair. M., & Baratz, M. E. (2005). A device for assessment of hand and wrist coronal plane strength. Journal of Biomechanical Engineering, 127:998-1000.
Moore, J. S., & Garg, A. (1994). Upper extremity disorders in a pork processing plant: relationships between job risk factors and morbidity. American Industrial Hygiene Association Journal, 55(8), 703-715.
Murray, R. M., Li, Z., & Sastry, S. S. (1994). A Mathematical Introduction to robotic manipulation. Boca Raton, FL: CRC Press.
Napier, J. R. (1956). The prehensile movements of the human hand. Journal of Bone & Joint Surgery, 38B, 902-913.
Nikanjam, M., Kursa, K., Lehman, S., Lattanza, L., Diao, E. & Rempel, D. (2007). Finger flexor motor control patterns during active flexion: An in vivo tendon force study. Human Movement Science, 26, 1-10.
Nordin, M., & Frankel, V. H. (2001). Basic biomechanics of the musculoskeletal system (3rd ed.). Baltimore: Lippincott Williams & Wilkins.
Olafsdottir, H., Zatsiorsky, V. M., & Latash, M. L. (2005). Is the thumb a fifth finger? A study of digit interaction during force production tasks. Experimental Brain Research, 160(2), 203-213.
Palastanga, N., Field, D., & Soames, R. (1994). Anatomy and human movement. . Oxford :Butterworth Heineman Ltd.
Pataky, T. C., Latash, M. L., & Zatsiorsky, V. M. (2004). Ergonomics, Tangential load sharing among fingers during prehension. Ergonomics, 47(8), 876 – 889.
Pearlman, J. L., Roach, S. S. & Valero-Cuevas, F. J. (2004). The fundamental thumb-tip force vectors produced by the muscles of the thumb. Journal of Orthopaedic Research, 22, 306-312.
Radhakrishnan, S., & Nagaravindra, M. (1993). Analysis of Hand Forces in Health and Disease during Maximum Isometric Grasping of Cylinders. Medical & Biological Engineering & Computing, 31(4), 372-376.
Rayan, G. M., & Young, B. T. (1997). Ligament reconstruction arthroplasty for trapeziometacarpal arthrosis. Journal of Hand Surgery American, 22, 1067-1076.
Rempel, D., Dennerlein, J., Mote, J., C D, & Armstrong, T. (1994). A method of measuring fingertip loading during keyboard use. Journal of Biomechanics, 27, 1101-1104.
Sancho-Bru, J. L., Perez-Gonzalez, A., Vergara-Monedero, M., & Giurintano, D. (2001). A 3-D dynamic model of human finger for studying free movements. Journal of Biomechanics, 34, 1491-1500.
Santello, M., Flanders, M., & Soechting, J. F. (2002). Patterns of hand motion during grasping and the influence of sensory guidance. J Neurosci, 22(4), 1426-1435.
Shih, Y. C. (2005). Effect of a splint on measures of sustained grip exertion under different forearm and wrist postures. Applied Ergonomics, 36, 293-299.
Shim, J. K., Huang, J. F., Hooke, A. W., Latsh, M. L., & Zatsiorsky, V. M. (2007). Multi-digit maximum voluntary torque production on a circular object. Ergonomics, 50(5), 660-675.
Shim, J. K., Lay, B. S., Zatsiorsky, V. M., & Latash, M. L. (2004). Age-related changes in finger coordination in static prehension tasks. Journal of Applied Physiology, 97, 213-224.
Shinohara, M., Li, S., Kang, N., Zatsiorsky, V. M., & Latash, M. L. (2003). Effects of age and gender on finger coordination in MVC and submaximal force-matching tasks. Journal of Applied Physiology, 94(1), 259-270.
Shinohara, M., Scholz, J. P., Zatsiorsky, V. M., & Latash, M. L. (2004). Finger interaction during accurate multi-finger force production tasks in young and elderly persons. Experimental Brain Research, 156(3), 282-292.
Small, J. O., Brennen, M. D., & Colville, J. (1989). Early active mobilization following flexor tendon repair in zone 2. Journal of Hand Surgery, 14, 383-391.
Smutz, W. P., Kongsayreepong, A., Hughes, R. E., Niebur, G., Cooney III, W. P., & An, K. N. (1998). Mechanical advantage of the thumb muscles. Journal of Biomechanics, 31, 565-570.
Sollerman C. & Sperling L. (1978). Evaluation of ADL function, especially hand function. Scand J Rehabil, Med. suppl 6: 139-143
Sollerman, C. (1980). Assessment of grip function; evaluation of a new test method. hand grip function. University of Gothenburg, Gothenburg.
Takai, S., Woo, S. L., Horibe, S., Tung, D. K. & Gelberman, R. H. (1991). The effects of frequency and duration of controlled passive mobilization on tendon healing. Journal of Orthopedic Research, 9, 705-713.
Talsania, J. S., & Kozin, S. H. (1998). Normal digital contribution to grip strength assessed by a computerized digital dynamometer. Journal of Hand Surgery, (British and European Volume), 23B,162-166..
Towles, J. D., Hentz, V. R., & Murray, W. M. (2008). Use of intrinsic thumb muscles may help to improve lateral pinch function restored by tendon transfer. Clinical Biomechanics, 23, 387–394.
Valero-Cuevas, F. J., Johanson, M. E. & Towles, J.D. (2003). Towards a realistic biomechanical model of the thumb: the choice of kinematic description is more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J Biomech, 36, 1019–1030.
Valero-Cuevas, F. J., Zajac, F. E., & Burgar, C. G. (1998). Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. Journal of Biomechanics, 31, 693-703.
Vigouroux, L., Quaine, F., Labarre-Vila, A., & Moutet, F. (2006). Estimation of finger muscle tendon tensions and pulley forces during specific sport-climbing grip techniques. Journal of Biomechanics, 39, 2583-2592.
Voorbij, A. I. M., & Steenbekkers, L. P. A. (2002). The twisting force of aged consumers when opening a jar. Applied Ergonomics, 33(1), 105-109.
Woolsey, C. N., Erickson, T. C., & Gilson, W. E. (1979). Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recordings of evoked potentials and electrical stimulation. J Neurosurg, 51, 476-506.
Wu, J. Z., An, K. N., Cutlip, R. G., Krajnak, K., Welcome, D., & Dong, R. G. (2008). Analysis of musculoskeletal loading in an index finger during tapping. Journal of Biomechanics, 41, 668-676.
Wu, Z. Z. (2007). Movement performance and tendon force of trigger fingers. Institute of Biomedical engineering, Tainan, Taiwan.
Yoxall, A., Janson, R., Bradbury, S. R., Langley, J., Wearn, J., & Hayes, S. (2006a). Openability: Producing design limits for consumer packaging. Packaging Technology and Science, 19(4), 219-225.
Yoxall, A., Langley, J., Janson, R., Wearn, J., & Manson, G. (2006b). The use of uncertainty analysis for the design of container closures. Packaging Technology and Science, 19(3), 139-147.
Yoxall, A., Luxmoore, J., Austin, M., Canty, L., Margrave, K. J., Richardson, C. J., Wearn, J., Howard, I. C., & Lewise, R. (2007). Getting to grips with packaging: Using ethnography and computer simulation to understand hand-pack interaction. Packaging Technology and Science, 20(3), 217-229.
Yu, W. S., Kilbreath, S. L., Fitzpatrick, R. C. & Gandevia, S. C. (2007). Thumb and finger forces produced by motor units in the long flexor of the human thumb. J Physiol, 583.3, 1145–1154.
Zajac, F. E. (1989). Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Revievies Biomedical Engineering, 17, 359-411.
Zancolli, E. (1979). Structural and Dynamic Bases of Hand Surgery (2nd ed.). Philadelphia: Lippincott.
Zatsiorsky, V. M., Gao, F., & Latash, M. L. (2003). Finger force vectors in multi-finger prehension. Journal of Biomechanics, 36(11), 1745-1749.
Zatsiorsky, V. M., Gregory, R. W., & Latash, M. L. (2002). Force and torque production in static multifinger prehension: biomechanics and control. I. biomechanics. Biological Cybernetics, 87, 50-57.