| 研究生: |
謝旻翰 Hsieh, Min-Han |
|---|---|
| 論文名稱: |
利用超導儲能系統及高壓直流輸電系統於混合超導同步發電機與雙饋式感應發電機之風力發電系統之穩定度改善 Stability Improvement of a Hybrid Wind Power Generation System including SCSG and DFIG Using SMES and HVDC |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 194 |
| 中文關鍵詞: | 超導同步發電機 、雙饋式感應發電機 、超導儲能系統 、高壓直流傳輸系統 、模糊控制器 、穩定度 |
| 外文關鍵詞: | Superconducting synchronous generator, doubly-fed induction generator, superconducting magnetic energy storage, high-voltage direct current link, fuzzy logic controller, stability |
| 相關次數: | 點閱:119 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了超導同步發電機之單機風場連接市電之架構,並以混合超導同步機及雙饋式感應發電機為基礎的風場提出三種不同架構,並分別採用超導儲能系統以及高壓直流傳輸系統作為控制系統,以改善系統穩定度。本論文中所用的交直軸等效電路數學模型是假設系統於三相平衡的條件下所推導。本論文於穩態特性方面,分析了不同風速以及電網端電壓變動時對系統特性之影響,動態模擬方面完成了不同風速及轉矩干擾模擬,暫態部分完成電網端電壓三相短路故障模擬結果。由模擬結果分析得知,兩種控制方法對所研究系統之功率潮流及穩定度有所改善,並且系統在加入模糊控制器後能夠進一步改善系統之穩定度。
This thesis presents stability analysis of a superconducting synchronous generator (SCSG)-based wind farm connected to a power grid and stability improvement of a hybrid wind power generation system based on SCSG and doubly-fed induction generator (DFIG) using a superconducting magnetic energy storage (SMES) unit and a high-voltage direct current (HVDC) link. The q-d axis equivalent-circuit model is derived to establish the complete system model under three-phase balance conditions. Steady-state analysis characteristics of the studied system under different values of wind speed and grid voltage are examined. Dynamic and transient simulations of the studied system subject to a wind-speed disturbance, a torque disturbance, and a three-phase fault at the power grid are also carried out. It can be concluded from the simulation results that the proposed two control systems can offer better effects on power flow control and stability improvement of the studied system, while the system stability can be further improved when the fuzzy logic controller (FLC) is in service.
[1] 江榮城,“台灣風力發電運轉經驗及未來展望”,環保資訊月刊,第97期,第11-18頁,2006年5月。
[2] 台灣電力公司,風力發電第四期計畫可行性研究報告,台灣電力公司,2011年6月。
[3] World Wind Energy Association, http://www.windea.org, retrieved date: Apr. 3, 2012.
[4] G. H. Kim, N. Kim, K. M. Kim, M. Park, I. K. Yu, S. Lee, and T. J. Park, “EMTDC based simulation of 10 MW class grid-connected superconducting wind turbine generator,” IEEE Trans. Applied Superconductivity, vol. 22, no. 3, pp. 1102-1105, Jun. 2012.
[5] G. H. Kim, N. Kim, K. M. Kim, M. Park, I. K. Yu, S. Lee, and T. J. Park, “Comparative analysis of 10 MW class geared and gearless type superconducting synchronous generators for a wind power generation system,” IEEE Trans. Applied Superconductivity, vol. 22, no. 3, pp. 1114-1117, Jun. 2012.
[6] A. B. Abrahamsen, N. Mijatovic, E. Seiler, M. P. Sorensen, M. Koch, P. B. Norgard, N. F. Pedersen, C. Trahlot, N. H. Andersen, and J. Ostergard, “Designed study of 10 kW superconducting generator for wind turbine application,” IEEE Trans. Applied Superconductivity, vol. 19, no. 3, pp. 1678-1682, Jun. 2009.
[7] T. Nam, J. W. Shim, and K. Hur, “The beneficial role of SMES coil in DC lines as an energy buffer for integrating large scale wind power,” IEEE Trans. Applied Superconductivity, vol. 22, no. 3, pp. 1404-1407, Jun. 2012.
[8] P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems,” IEEE Trans. Power Apparatus and Systems, vol. 102, no. 12, pp. 3791-3795, Dec. 1983.
[9] A. O. Ibrahim, T. H. Nguyen, D. -C. Lee, and S. -C. Kim, “A fault ride-through technique of DFIG wind turbine systems using dynamic voltage restorers,” IEEE Trans. Energy Conversion, vol. 26, no. 3, pp. 871-882, Sep. 2011.
[10] S. D. Umans, “Transient performance of a high-temperature- superconducting generator,” in Proc. 2009 IEEE International Electric Machines & Drives Conference, Miami, Florida, May 6, 2009, pp. 451-457.
[11] S. M. Osheba, M. A. A. S. Alyan, and Y. H. A. Rahim, “Comparison of transient performance of superconducting and conventional generators in a multimachine system,” IEEE Trans. Power Apparatus and Systems, vol. 135, no. 5, pp. 385-396, Sep. 1988.
[12] G. H. Kim, N. Kim, K. M. Kim, M. Park, I. K. Yu, S. Lee, and T. J. Park, “Control scheme of a superconducting synchronous generator applied to a grid-connected wind power generation system,” in Proc. 2012 15th International Conference on Electrical Machines and Systems (ICEMS), Changwon, South Korea , Oct. 24-25, 2012, pp. 1-4.
[13] M. Kayikci and J. V. Milanović, “Reactive power control strategies for DFIG-based plants,” IEEE Trans. Energy Conversion, vol. 22, no. 2, pp. 389-396, Jun. 2007.
[14] F. Wu, X. P. Zhang, K. Godfrey, and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission, and Distribution, vol. 1, no. 5, pp. 751-760, Sep. 2007.
[15] J. Morren and S. Haan, “Short-circuit current of wind turbines with doubly-fed induction generator,” IEEE Trans. Energy Conversion, vol. 22, no. 1, pp. 174-180, Mar. 2007.
[16] Q. Jiang and M. F. Conlon, “The power regulation of a PWM type superconducting magnetic energy storage unit,” IEEE Trans. Energy Conversion, vol. 11, no. 1, pp. 168-174, Mar. 1996.
[17] L. Wang, S. S. Chen, W. J. Lee, and Z. Chen, “Dynamic stability enhancement and power flow control of a hybrid wind and marine-current farm using SMES,” IEEE Trans. Energy Conversion, vol. 24, no. 3, pp. 626-639, Sep. 2009.
[18] P. Bresesti, W. L. Kling, R. L. Hendriks, and R. Vailati, “HVDC connection of offshore wind farms to the transmission system,” IEEE Trans. Energy Conversion, vol. 22, no. 1, pp. 37-43, Mar. 2007.
[19] R. Li, S. Bozhko, and G. Asher, “Frequency control design for offshore wind farm grid with LCC-HVDC link connection,” IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1085-1092, May 2008.
[20] C. Feltes, H. Wrede, F. W. Koch, and I. Erlich, “Enhanced fault ride-through method for wind farms connected to the grid through VSC-based HVDC transmission,” IEEE Trans. Power Systems, vol. 24, no. 3, pp. 1537-1546, Aug. 2009.
[21] R. Schiferl, A. Flory, W. C. Livoti, and S. D. Umans, “High-temperature superconducting synchronous motors: economic issues for industrial applications,” IEEE Trans. Industry Applications, vol. 44, no. 5, pp. 1376-1384, Sep. 2008.
[22] M. Saekjia and I. Ngamroo, “Alleviation of power fluctuation in interconnected power systems with wind farm by SMES with optimal coil size,” IEEE Trans. Applied Superconductivity, vol. 22, no. 3, pp. 1504-1507, Jun. 2012.
[23] A. M. Shiddiq, A. S. Masoum, and A. Siada, “Application of SMES to enhance the dynamic performance of DFIG during voltage sag and swell,” IEEE Trans. Applied Superconductivity, vol. 22, no. 4, pp. 1019-1027, Aug. 2012.
[24] S. M. Muyeen, R. Takahashi, and J. Tamura, “Operation and control of HVDC-connected offshore wind farm,” IEEE Trans. Sustainable Energy, vol. 1, no. 1, pp. 30-37, Apr. 2010.
[25] L. Wang and M. S.-Nguyen Thi, “Stability analysis of four PMSG-based offshore wind farms fed to an SG-based power system through an LCC-HVDC link,” IEEE Trans. Industrial Electronics, vol. 60, no. 6, pp. 2392-2400, Jun. 2013.
[26] R. E. T. Olguin, A. Garces, M. Molinas, and T. Undeland, “Integration of offshore wind farm using a hybrid HVDC transmission composed by the PWM current-source converter and line commutated converter,” IEEE Trans. Energy Conversion, vol. 28, no. 1, pp. 125-134, Mar. 2013.
[27] H. Zhou, G. Yang, and J. Wang, “Modeling, analysis, and control for the rectifier of hybrid HVDC systems for DFIG-based wind farms,” IEEE Trans. Energy Conversion, vol. 26, no. 1, pp. 340-353, Mar. 2011.
[28] L. Kang, L. B. Shi, Y. X. Ni, L. Z. Yao, and M. Bazargan, “Small signal stability analysis with penetration of grid-connected wind farm of PMSG type,” in Proc. IEEE Advanced Power System Automation and Protection (APAP), vol. 1, Beijing, China, Oct. 16-20, 2011, pp. 147-151.
[29] C. Rehtanz, “Systemic use of multifunctional SMES in electric power systems,” IEEE Trans. Power Systems, vol. 14, no. 4, pp. 1422-1427, Nov. 1999.
[30] P. Fischer, Modeling and Control of A Line-Commutated HVDC Transmission System Interacting with A VSC STATCOM, Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden, 2007.
[31] Y. Iwata, S. Tanaka, K. Sakamoto, H. Konishi, and H. Kawazoe, “Simulation study of a hybrid HVDC system composed of a self-commutated converter and a line-commutated converter,” in Proc. 6th International Conference on AC and DC Power Transmission, London, UK, Apr. 29-May 3, 1996, pp. 381-386.
[32] B. R. Andersen and X. Lie, “Hybrid HVDC system for power transmission to island networks,” IEEE Trans. Power Delivery, vol. 19, no. 4, pp. 1884-1890, Oct. 2004.
[33] R. E. T. Olguin, M. Molinas, and T. Undeland, “Offshore wind farm grid integration by VSC technology with LCC-based HVDC transmission,” IEEE Trans. Sustainable Energy, vol. 3, no. 4, pp. 899-907, Oct. 2012.
[34] P. Bresesti, W. L. Kling, R. L. Hendriks, and R. Vailati, “HVDC connection of offshore wind farms to the transmission system,” IEEE Trans. Energy Conversion, vol. 22, no. 1, pp. 37-43, Mar. 2007.
[35] A. Jaén, E. Acha, and A. G. Expósito, “Voltage source converter modeling for power system state estimation: STATCOM and VSC-HVDC,” IEEE Trans. Power Systems, vol. 23, no. 4, pp. 1552-1559, Nov. 2008.
[36] O. Kotb and V. K. Sood, “A hybrid HVDC transmission system supplying a passive load,” in Proc. 2010 IEEE Electric Power and Energy Conference (EPEC 2010), Halifax, Nova Scotia, Canada, Aug. 25-27, 2010, pp. 1-5.
[37] J. G. Slootweg and W. L. Kling, “Aggregated modeling of wind park s in power sysyem,” in Proc. IEEE Power Tech conference, Bologna, Italy, Jun. 23-26, 2003.
[38] P. Kundur, Power System Stability and Control, New York: McGraw-Hill, 1994.
[39] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
[40] 葉芳銘,超導與傳統發電機在多機電力系統之穩定度分析,國立成功大學電機工程學系碩士論文,民國八十一年六月。
[41] 王國華,風力感應發電機經高壓直流傳輸線併聯市電之研究,國立成功大學電機工程學系碩士論文,民國九十六年七月。
[42] 劉建宏,海流發電系統之特性分析,國立成功大學電機工程學系碩士論文,民國九十七年七月。
[43] 陳翔雄,利用超導儲能系統於大型離岸式風場之動態穩定度改善研究,國立成功大學電機工程學系博士論文,民國九十八年三月。
[44] 李浩文,利用超導儲能系統以及整合型功率潮流控制器於整合離岸式風場與沿岸波浪場之功率潮流控制及穩定度分析,國立成功大學電機工程學系碩士論文,民國一百年七月。
[45] 林俊佑,採用高壓直流輸電系統於混合再生能源發電系統之穩定度改善與功率潮流控制,國立成功大學電機工程學系碩士論文,民國一百年七月。
[46] 葉峻睿,採用混合雙饋式感應發電機與永磁同步發電機之新型風力發電系統穩定度分析,國立成功大學電機工程學系碩士論文,民國一百零一年七月。