| 研究生: |
謝孟玲 Hsieh, Meng-Ling |
|---|---|
| 論文名稱: |
含多邊形孔洞之異向性彈性體經典問題新解 Novel Solutions for Classical Problems of Polygonal Holes in Anisotropic Elastic Media |
| 指導教授: |
胡潛濱
Hwu, Chyan-Bin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 183 |
| 中文關鍵詞: | 史磋公式 、多邊形孔洞 、格林函數 、異向性彈性力學 、微擾法 、邊界元素法 |
| 外文關鍵詞: | Anisotropic elasticity, Boundary element method, Green's function, Perturbation method, Polygonal hole, Stroh formalism |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
等向性材料的多邊形孔洞問題雖已有解析解,但要將其擴展至異向性材料卻非常困難。原因在於異向性彈性力學的複變理論涉及三個主要複變數,而等向性彈性力學則只需一個。除了橢圓孔洞外,無法找到能同時適用於這三個複變數的映射函數組。因此,對於非橢圓孔洞,通常會採用一對多映射法或以橢圓孔洞為基礎的微擾法求解。本文採用微擾法推導解析解,並將其對比一對多映射法的解。首先探討在無限域中由橢圓加上單項微擾所形成的簡單多邊形孔洞,而後推廣至任意多邊形孔洞及其退化為裂縫的情況。比較兩種解顯示,一對多映射法在孔洞附近相當準確,但由於映射函數的多值特性,使得位移和應力在分支切割兩側不連續,並使臨界點處的應力趨近無限大。相對而言,微擾法在孔洞附近準確性雖不及一對多映射法,但隨著距離增加,準確性會迅速提升。這兩種解具有互補特性,將其結合使用,可獲得準確的全域結果。此外,利用這兩種方法所得的格林函數可用於建構處理有限域問題的特殊邊界元素法及結合兩者使用的混合邊界元素法。相較於傳統邊界元素法,該方法因為不需在孔洞邊界上劃分網格,故使其計算效率優於傳統邊界元素法。
This dissertation focuses on polygonal holes in two-dimensional anisotropic elastic solids, where physical quantities are independent of the thickness direction but permits coupling between in-plane and anti-plane deformation. The methodology is based on the Stroh formalism, a complex-variable formalism for anisotropic elasticity suitable for both generalized plane stress and generalized plane strain problems. Despite the well-developed solutions for isotropic elasticity, their extension to anisotropic elasticity is nontrivial because mappings for the three variables involved in the Stroh formalism are hard to construct. Proper mappings must (1) be one-to-one (conformal), and (2) produce coinciding images along the hole boundary. Only elliptical holes fulfil both requirements at the same time. Non-elliptical holes are usually addressed using a nonconformal mapping or via perturbation method based on the special case of elliptical holes.
In the present work, solutions are derived using the perturbation method and are compared with available nonconformal solutions. The analysis begins with simple polygonal holes in infinite domains, i.e., elliptical holes with a single-term boundary perturbation, and is then generalized to arbitrary polygonal holes in infinite domains, including their degeneration to cracks. Through numerical examples, nonconformal solutions are found to be accurate near the hole but suffer from discontinuity issues due to the nature of nonconformal mappings, whereas perturbation solutions, though less accurate near the hole, improve as the distance from the hole increases. In regard to their complementary characteristics, the two solutions, when strategically combined, can provide reliable results over the entire domain. For finite domains, two special boundary element methods (using the nonconformal and perturbation solutions, respectively) and a hybrid boundary element method are developed, which are more computationally efficient than conventional boundary elements since meshing on the hole boundary is not required. The proposed boundary elements can be used in conjunction with the boundary-based finite element method to analyse domains containing multiple polygonal holes. The analytical solutions and numerical methods presented in this dissertation are verified through comparison with commercial finite element software Ansys.
Ahlfors, L. V. (1979). Complex analysis: an introduction to the theory of analytic functions of one complex variable. New York: McGraw-Hill.
Amestoy, M., & Leblond, J. B. (1992). Crack paths in plane situations—II. Detailed form of the expansion of the stress intensity factors. International Journal of Solids and Structures, 29(4), 465-501. doi:10.1016/0020-7683(92)90210-K
Bashkankova, E. A., Vakaeva, A. B., & Grekov, M. A. (2015). Perturbation method in the problem on a nearly circular hole in an elastic plane. Mechanics of Solids, 50(2), 198-207. doi:10.3103/s0025654415020090
Batista, M. (2011). On the stress concentration around a hole in an infinite plate subject to a uniform load at infinity. International Journal of Mechanical Sciences, 53(4), 254-261. doi:10.1016/j.ijmecsci.2011.01.006
Berger, J. R. (1994). Boundary element analysis of anisotropic bimaterials with special Green's functions. Engineering Analysis with Boundary Elements, 14(2), 123-131. doi:10.1016/0955-7997(94)90088-4
Brebbia, C. A., Telles, J. C. F., & Wrobel, L. C. (1984). Boundary element techniques: theory and applications in engineering (1st ed.). Heidelberg, Germany: Springer.
Chauhan, M. M., & Sharma, D. S. (2015). Stresses in finite anisotropic plate weakened by rectangular hole. International Journal of Mechanical Sciences, 101-102, 272-279. doi:10.1016/j.ijmecsci.2015.08.007
Chauhan, M. M., & Sharma, D. S. (2016). Stress concentration at the corners of polygonal hole in finite plate. Aerospace Science and Technology, 58, 197-206. doi:10.1016/j.ast.2016.08.014
Chauhan, M. M., Sharma, D. S., & Dave, J. M. (2016). Stress intensity factor for hypocycloidal hole in finite plate. Theoretical and Applied Fracture Mechanics, 82, 59-68. doi:10.1016/j.tafmec.2015.12.005
Chen, C.-Y. (2020). Numerical Analysis for Degenerate Materials on Complex Variable Formalism. (Master Thesis). National Cheng Kung University, Tainan, Taiwan, R.O.C.
Chen, E. L., & Ang, W. T. (2013). Special Green’s function boundary element approach for steady-state axisymmetric heat conduction across low and high conducting planar interfaces. Applied Mathematical Modelling, 37(4), 1948-1965. doi:10.1016/j.apm.2012.04.051
Chen, S., Xia, Z., Feng, F., & Yin, D. (2021). Numerical study on strength and failure characteristics of rock samples with different hole defects. Bulletin of Engineering Geology and the Environment, 80(2), 1523-1540. doi:10.1007/s10064-020-01964-y
Chen, Y. C., & Hwu, C. (2010). Green's functions for anisotropic/piezoelectric bimaterials and their applications to boundary element analysis. CMES - Computer Modeling in Engineering and Sciences, 57(1), 31-50.
Chen, Y. C., & Hwu, C. (2014). Boundary element method for vibration analysis of two-dimensional anisotropic elastic solids containing holes, cracks or interfaces. Engineering Analysis with Boundary Elements, 40, 22-35. doi:10.1016/j.enganabound.2013.11.013
Cheng, X., & Liang, X. (2019). Discussion on the analogy between heat and electric conductions. International Journal of Heat and Mass Transfer, 131, 709-712. doi:10.1016/j.ijheatmasstransfer.2018.11.111
Chuaqui, T. R. C., Nielsen, M. W. D., Colton, J., Butler, R., & Rhead, A. T. (2021). Effects of ply angle and blocking on open-hole tensile strength of composite laminates: A design and certification perspective. Composites Part B: Engineering, 207, 108582. doi:10.1016/j.compositesb.2020.108582
Cormier, N. G., Smallwood, B. S., Sinclair, G. B., & Meda, G. (1999). Aggressive submodelling of stress concentrations. International Journal for Numerical Methods in Engineering, 46(6), 889-909. doi:10.1002/(SICI)1097-0207(19991030)46:6<889::AID-NME699>3.0.CO;2-F
Curreli, C., Viceconti, M., & Di Puccio, F. (2021). Submodeling in wear predictive finite element models with multipoint contacts. International Journal for Numerical Methods in Engineering, 122(15), 3812-3823. doi:10.1002/nme.6682
Dai, M., & Gao, C.-F. (2014). Perturbation solution of two arbitrarily-shaped holes in a piezoelectric solid. International Journal of Mechanical Sciences, 88, 37-45. doi:10.1016/j.ijmecsci.2014.06.015
Daoust, J., & Hoa, S. V. (1991). An analytical solution for anisotropic plates containing triangular holes. Composite Structures, 19(2), 107-130. doi:10.1016/0263-8223(91)90018-T
Denda, M., & Kosaka, I. (1997). Dislocation and point-force-based approach to the special Green's Function BEM for elliptic hole and crack problems in two dimensions. International Journal for Numerical Methods in Engineering, 40(15), 2857-2889. doi:10.1002/(SICI)1097-0207(19970815)40:15<2857::AID-NME195>3.0.CO;2-3
Driscoll, T. A. (2021). Schwarz–Christoffel Toolbox for conformal mapping in MATLAB [Computer software]. Retrieved from https://github.com/tobydriscoll/sc-toolbox doi:10.5281/zenodo.5245134
Driscoll, T. A., & Trefethen, L. N. (2002). Schwarz-Christoffel mapping. Cambridge: Cambridge University Press.
Durelli, A. J., Parks, V. J., & Lopardo, V. J. (1970). Stresses and finite strains around an elliptic hole in finite plates subjected to uniform load. International Journal of Non-Linear Mechanics, 5(3), 397-411. doi:10.1016/0020-7462(70)90003-X
Dveirin, O. Z., Andreev, O. V., Kondrat’ev, A. V., & Haidachuk, V. Y. (2021). Stressed State in the Vicinity of a Hole in Mechanical Joint of Composite Parts. International Applied Mechanics, 57(2), 234-247. doi:10.1007/s10778-021-01076-4
Ekneligoda, T. C., & Zimmerman, R. W. (2008). Boundary perturbation solution for nearly circular holes and rigid inclusions in an infinite elastic medium. Journal of Applied Mechanics, 75(1). doi:10.1115/1.2745826
Fergoug, M., Parret-Fréaud, A., Feld, N., Marchand, B., & Forest, S. (2024). Hierarchical modeling of heterogeneous structures driven by a modeling error estimator. Computer Methods in Applied Mechanics and Engineering, 418, 116529. doi:10.1016/j.cma.2023.116529
Fricks, C. R., III. (2023). Computational and Experimental Investigation of Mass Reduced Aircraft Wing Ribs. (Master Thesis). Georgia Southern University, Statesboro, GA.
Gao, H. (1992). Stress analysis of holes in anisotropic elastic solids: conformal mapping and boundary perturbation. The Quarterly Journal of Mechanics and Applied Mathematics, 45(2), 149-168. doi:10.1093/qjmam/45.2.149
Givoli, D., & Elishakoff, I. (1992). Stress concentration at a nearly circular hole with uncertain irregularities. Journal of Applied Mechanics, 59(2S), S65-S71. doi:10.1115/1.2899509
Greenspan, M. (1944). Effect of a small hole on the stresses in a uniformly loaded plate. Quarterly of Applied Mathematics, 2, 60-71. doi:10.1090/qam/10101
Hahn, D. W., & Özişik, M. N. (2012). Heat Conduction (3rd ed.). New Jersey, NJ: John Wiley & Sons.
Hsu, C. W., & Hwu, C. (2020). Green's functions for unsymmetric composite laminates with inclusions. Proc. R. Soc. A., 476(2233), 20190437. doi:10.1098/rspa.2019.0437
Hwu, C. (1990). Anisotropic plates with various openings under uniform loading or pure bending. Journal of Applied Mechanics, 57(3), 700-706. doi:10.1115/1.2897080
Hwu, C. (1992). Polygonal holes in anisotropic media. International Journal of Solids and Structures, 29(19), 2369-2384.
Hwu, C. (2010). Anisotropic elastic plates. New York, NY: Springer.
Hwu, C. (2021). Anisotropic elasticity with Matlab. Cham, Switzerland: Springer.
Hwu, C., Hsieh, M.-L., & Huang, C.-L. (2023). Some Green’s functions for steady-state heat conduction in anisotropic plane media and their application to thermoelastic boundary element analysis. Journal of Thermal Stresses, 46(10), 1103-1126. doi:10.1080/01495739.2023.2232420
Hwu, C., Hsu, C.-L., & Chen, W.-R. (2017a). Corrective evaluation of multi-valued complex functions for anisotropic elasticity. Mathematics and Mechanics of Solids, 22(10), 2040-2062. doi:10.1177/1081286517728542
Hwu, C., Huang, S.-T., & Li, C.-C. (2017b). Boundary-based finite element method for two-dimensional anisotropic elastic solids with multiple holes and cracks. Engineering Analysis with Boundary Elements, 79, 13-22. doi:10.1016/j.enganabound.2017.03.003
Hwu, C., & Kuo, T. L. (2007). A unified definition for stress intensity factors of interface corners and cracks. International Journal of Solids and Structures, 44(18), 6340-6359. doi:10.1016/j.ijsolstr.2007.02.031
Hwu, C., & Liang, Y. C. (2000). Evaluation of stress concentration factors and stress intensity factors from remote boundary data. International Journal of Solids and Structures, 37(41), 5957-5972. doi:10.1016/S0020-7683(99)00245-0
Hwu, C., & Wang, W. Y. (1992). Various rigid inclusions in anisotropic media. Journal of the Chinese Society of Mechanical Engineers, 13(1), 10-16.
Hwu, C., & Yen, W. J. (1991). Green's functions of two-dimensional anisotropic plates containing an elliptic hole. International Journal of Solids and Structures, 27(13), 1705-1719. doi:10.1016/0020-7683(91)90070-v
Hwu, C., & Yen, W. J. (1993). On the anisotropic elastic inclusions in plane elastostatics. Journal of Applied Mechanics, 60(3), 626-632. doi:10.1115/1.2900850
Jafari, M., & Bayati Chaleshtari, M. H. (2017). Using dragonfly algorithm for optimization of orthotropic infinite plates with a quasi-triangular cut-out. European Journal of Mechanics - A/Solids, 66, 1-14. doi:10.1016/j.euromechsol.2017.06.003
Jiang, Y., Jin, L., & Huo, Y. (2021). Unusual stress and strain concentration behaviors at the circular hole of a large monodomain liquid crystal elastomer sheet. Journal of the Mechanics and Physics of Solids, 156, 104615. doi:10.1016/j.jmps.2021.104615
Jing, Z., Duan, L., & Wang, S. (2024). Buckling optimization of variable-stiffness composite plates with two circular holes using discrete Ritz method and potential flow. International Journal of Solids and Structures, 297, 112845. doi:10.1016/j.ijsolstr.2024.112845
Kamel, M., & Liaw, B. M. (1991). Boundary element formulation with special kernels for an anisotropic plate containing an elliptical hole or a crack. Engineering Fracture Mechanics, 39(4), 695-711. doi:10.1016/0013-7944(91)90220-U
Khechai, A., Tati, A., Belarbi, M. O., & Guettala, A. (2019). Numerical Analysis of Stress Concentration in Isotropic and Laminated Plates with Inclined Elliptical Holes. Journal of The Institution of Engineers (India): Series C, 100(3), 511-522. doi:10.1007/s40032-018-0448-4
Kumar, A., Agrawal, A., Ghadai, R., & Kalita, K. (2016). Analysis of Stress Concentration in Orthotropic Laminates. Procedia Technology, 23, 156-162. doi:10.1016/j.protcy.2016.03.012
Lekhnitskii, S. G. (1968). Anisotropic plates. New York, NY: Gordon and Breach.
Lekhnitskii, S. G. (1981). Theory of Elasticity of an Anisotorpic Body. Moscow, Russia: MIR.
Li, Y., & Zheng, K. (2021). Stress intensity factor analysis of kinked and hole crack in an infinite plate using numerical conformal mapping. Theoretical and Applied Fracture Mechanics, 114, 103022. doi:10.1016/j.tafmec.2021.103022
Lin, C.-C., & Ko, C.-C. (1988). Stress and Strength Analysis of Finite Composite Laminates with Elliptical Holes. Journal of Composite Materials, 22(4), 373-385. doi:10.1177/002199838802200405
Lin, Q., Cao, P., Liu, Y., Cao, R., & Li, J. (2021). Mechanical behaviour of a jointed rock mass with a circular hole under compression-shear loading: Experimental and numerical studies. Theoretical and Applied Fracture Mechanics, 114, 102998. doi:10.1016/j.tafmec.2021.102998
Louhghalam, A., Igusa, T., Park, C., Choi, S., & Kim, K. (2011). Analysis of stress concentrations in plates with rectangular openings by a combined conformal mapping – Finite element approach. International Journal of Solids and Structures, 48(13), 1991-2004. doi:10.1016/j.ijsolstr.2011.03.005
Lu, A., Zhang, N., Zhang, X., Lu, D., & Li, W. (2015). Analytic method of stress analysis for an orthotropic rock mass with an arbitrary-shaped tunnel. International Journal of Geomechanics, 15(4). doi:10.1061/(asce)gm.1943-5622.0000408
Madenci, E., Ileri, L., & Kudva, J. N. (1993). Analysis of finite composite laminates with holes. International Journal of Solids and Structures, 30(6), 825-834. doi:10.1016/0020-7683(93)90042-6
Maksymovych, О. V., & Solyar, Т. Y. (2022). Determination of Stress Concentration Near Dies, Holes, and Cracks in the Half Plane Based on the Method of Integral Equations and Green Solutions. Journal of Mathematical Sciences, 261(1), 162-175. doi:10.1007/s10958-022-05745-8
Mengsha, S., Chunyu, Z., Yuheng, C., & Biao, W. (2023). Experimental and theoretical evaluation of influence of hole size on deformation and fracture of elastic perforated plate. Mechanics of Materials, 187, 104841. doi:10.1016/j.mechmat.2023.104841
Muskhelishvili, N. I. (1977). Some basic problems of the mathematical theory of elasticity: fundamental equations plane theory of elasticity torsion and bending. Dordrecht, Netherlands: Springer.
Nageswara Rao, D. K., Ramesh Babu, M., Raja Narender Reddy, K., & Sunil, D. (2010). Stress around square and rectangular cutouts in symmetric laminates. Composite Structures, 92(12), 2845-2859. doi:10.1016/j.compstruct.2010.04.010
Nguyen-Hoang, M., & Becker, W. (2022). Open holes in composite laminates with finite dimensions: structural assessment by analytical methods. Archive of Applied Mechanics, 92(3), 1101-1125. doi:10.1007/s00419-021-02095-w
Pan, E., Yang, B., Cai, G., & Yuan, F. G. (2001). Stress analyses around holes in composite laminates using boundary element method. Engineering Analysis with Boundary Elements, 25(1), 31-40. doi:10.1016/S0955-7997(00)00066-7
Pan, Z., Cheng, Y., & Liu, J. (2013). Stress analysis of a finite plate with a rectangular hole subjected to uniaxial tension using modified stress functions. International Journal of Mechanical Sciences, 75, 265-277. doi:10.1016/j.ijmecsci.2013.06.014
Patel, A., & Desai, C. K. (2020). Stress concentration around an elliptical hole in a large rectangular plate subjected to linearly varying in-plane loading on two opposite edges. Theoretical and Applied Fracture Mechanics, 106, 102432. doi:10.1016/j.tafmec.2019.102432
Qin, Q. H. (1999a). Green's function for thermopiezoelectric plates with holes of various shapes. Archive of Applied Mechanics, 69(6), 406-418. doi:10.1007/s004190050230
Qin, Q. H. (1999b). Green function and its application for a piezoelectric plate with various openings. Archive of Applied Mechanics, 69(2), 133-144. doi:10.1007/s004190050210
Rana, R. S., Kumar, J., Singh, I., & Sharma, A. K. (2024). Comparative analysis of drilled and molded holes in short natural fiber reinforced composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 238(3), 493-503. doi:10.1177/14644207231191618
Rezaeepazhand, J., & Jafari, M. (2010). Stress concentration in metallic plates with special shaped cutout. International Journal of Mechanical Sciences, 52(1), 96-102. doi:10.1016/j.ijmecsci.2009.10.013
Rice, J. R. (1968). A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics, 35(2), 379-386. doi:10.1115/1.3601206
Savin, G. N. (1970). Stress Distribution around Holes. Washington, D. C.: NASA.
Setiawan, N. B., & Zimmerman, R. W. (2020). A unified methodology for computing the stresses around an arbitrarily-shaped hole in isotropic or anisotropic materials. International Journal of Solids and Structures, 199, 131-143. doi:10.1016/j.ijsolstr.2020.03.022
Sharma, D. S. (2012). Stress distribution around polygonal holes. International Journal of Mechanical Sciences, 65(1), 115-124. doi:10.1016/j.ijmecsci.2012.09.009
Sharma, D. S. (2015). Stresses around polygonal hole in an infinite laminated composite plate. European Journal of Mechanics - A/Solids, 54, 44-52. doi:10.1016/j.euromechsol.2015.06.004
Sharma, D. S., & Dave, J. M. (2015). Stress intensity factors for hypocycloidal hole with cusps in infinite anisotropic plate. Theoretical and Applied Fracture Mechanics, 75, 44-52. doi:10.1016/j.tafmec.2014.10.005
Sih, G. C. (1965). Stress distribution near internal crack tips for longitudinal shear problems. Journal of Applied Mechanics, 32(1), 51-58. doi:10.1115/1.3625783
Stern, M., Becker, E. B., & Dunham, R. S. (1976). A contour integral computation of mixed-mode stress intensity factors. International Journal of Fracture, 12(3), 359-368. doi:10.1007/BF00032831
Su, Z., Xie, C., & Tang, Y. (2018). Stress distribution analysis and optimization for composite laminate containing hole of different shapes. Aerospace Science and Technology, 76, 466-470. doi:10.1016/j.ast.2018.01.046
Tan, L., Ren, T., Dou, L., Yang, X., Qiao, M., & Peng, H. (2021). Analytical stress solution and mechanical properties for rock mass containing a hole with complex shape. Theoretical and Applied Fracture Mechanics, 114, 103002. doi:10.1016/j.tafmec.2021.103002
Tane, T., Sasaki, T., Miyagawa, M., Kurose, M., & Kimura, K. (2022). Analysis of anisotropic elastic medium with multiple elliptical holes subjected to uniform load of in-plane and out-of-plane shear at infinity. Journal of the Society of Materials Science, Japan, 71(9), 773-780. doi:10.2472/jsms.71.773
Theocaris, P. S., & Petrou, L. (1986). Stress distributions and intensities at corners of equilateral triangular holes. International Journal of Fracture, 31(4), 271-289. doi:10.1007/BF00044050
Ting, T. C. T. (1996). Anisotropic elasticity: theory and spplications. New York, NY: Oxford University Press.
Ting, T. C. T. (2000). Common errors on mapping of nonelliptic curves in anisotropic elasticity. Journal of Applied Mechanics, 67(4), 655-657. doi:10.1115/1.1311961
Tsai, S. W., & Hahn, H. T. (1980). Introduction to composite materials. Pennsylvania: Technomics.
Ukadgaonker, V. G., & Kakhandki, V. (2005). Stress analysis for an orthotropic plate with an irregular shaped hole for different in-plane loading conditions—Part 1. Composite Structures, 70(3), 255-274. doi:10.1016/j.compstruct.2004.08.032
Ukadgaonker, V. G., & Rao, D. K. N. (2000). A general solution for stresses around holes in symmetric laminates under inplane loading. Composite Structures, 49(3), 339-354. doi:10.1016/s0263-8223(00)00070-2
Woo, C. W., & Chan, L. W. S. (1992). Boundary collocation method for analyzing perforated plate problems. Engineering Fracture Mechanics, 43(5), 757-768. doi:10.1016/0013-7944(92)90006-Z
Wu, H., Zhao, G., & Liang, W. (2020). Mechanical properties and fracture characteristics of pre-holed rocks subjected to uniaxial loading: A comparative analysis of five hole shapes. Theoretical and Applied Fracture Mechanics, 105, 102433. doi:10.1016/j.tafmec.2019.102433
Xu, X., Yue, T. M., & Man, H. C. (1999). Stress analysis of finite composite laminate with multiple loaded holes. International Journal of Solids and Structures, 36(6), 919-931. doi:10.1016/S0020-7683(97)00343-0
Yamashita, D., Kato, H., & Nakazawa, J. (2004). U.S. Patent No. 6,786,452. P. a. T. Office.
Yasin, B., Qi'Dan, D., Al-Olimat, S., Ayasrah, M., & Almasaeid, H. (2023). Effect of the fibre orientation angles on stress concentration around various shapes of hole in laminated composite plate subject to in-plane loading. Civil and Environmental Engineering, 19(1), 218-223. doi:10.2478/cee-2023-0019
Zhang, H., Dickson, A. N., Sheng, Y., McGrail, T., Dowling, D. P., Wang, C., Neville, A., & Yang, D. (2020). Failure analysis of 3D printed woven composite plates with holes under tensile and shear loading. Composites Part B: Engineering, 186, 107835. doi:10.1016/j.compositesb.2020.107835
Zheng, X., & Xu, X. (1999). Stress analysis of finite composite laminates with elliptical inclusion. Computers & Structures, 70(3), 357-361. doi:10.1016/S0045-7949(98)00149-7
Zucco, G., Rouhi, M., Oliveri, V., Cosentino, E., O’Higgins, R. M., & Weaver, P. M. (2021). Continuous Tow Steering Around an Elliptical Cutout in a Composite Panel. AIAA Journal, 59(12), 5117-5129. doi:10.2514/1.J060668
校內:2030-06-23公開