簡易檢索 / 詳目顯示

研究生: 謝孟玲
Hsieh, Meng-Ling
論文名稱: 含多邊形孔洞之異向性彈性體經典問題新解
Novel Solutions for Classical Problems of Polygonal Holes in Anisotropic Elastic Media
指導教授: 胡潛濱
Hwu, Chyan-Bin
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 183
中文關鍵詞: 史磋公式多邊形孔洞格林函數異向性彈性力學微擾法邊界元素法
外文關鍵詞: Anisotropic elasticity, Boundary element method, Green's function, Perturbation method, Polygonal hole, Stroh formalism
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 等向性材料的多邊形孔洞問題雖已有解析解,但要將其擴展至異向性材料卻非常困難。原因在於異向性彈性力學的複變理論涉及三個主要複變數,而等向性彈性力學則只需一個。除了橢圓孔洞外,無法找到能同時適用於這三個複變數的映射函數組。因此,對於非橢圓孔洞,通常會採用一對多映射法或以橢圓孔洞為基礎的微擾法求解。本文採用微擾法推導解析解,並將其對比一對多映射法的解。首先探討在無限域中由橢圓加上單項微擾所形成的簡單多邊形孔洞,而後推廣至任意多邊形孔洞及其退化為裂縫的情況。比較兩種解顯示,一對多映射法在孔洞附近相當準確,但由於映射函數的多值特性,使得位移和應力在分支切割兩側不連續,並使臨界點處的應力趨近無限大。相對而言,微擾法在孔洞附近準確性雖不及一對多映射法,但隨著距離增加,準確性會迅速提升。這兩種解具有互補特性,將其結合使用,可獲得準確的全域結果。此外,利用這兩種方法所得的格林函數可用於建構處理有限域問題的特殊邊界元素法及結合兩者使用的混合邊界元素法。相較於傳統邊界元素法,該方法因為不需在孔洞邊界上劃分網格,故使其計算效率優於傳統邊界元素法。

    This dissertation focuses on polygonal holes in two-dimensional anisotropic elastic solids, where physical quantities are independent of the thickness direction but permits coupling between in-plane and anti-plane deformation. The methodology is based on the Stroh formalism, a complex-variable formalism for anisotropic elasticity suitable for both generalized plane stress and generalized plane strain problems. Despite the well-developed solutions for isotropic elasticity, their extension to anisotropic elasticity is nontrivial because mappings for the three variables involved in the Stroh formalism are hard to construct. Proper mappings must (1) be one-to-one (conformal), and (2) produce coinciding images along the hole boundary. Only elliptical holes fulfil both requirements at the same time. Non-elliptical holes are usually addressed using a nonconformal mapping or via perturbation method based on the special case of elliptical holes.
    In the present work, solutions are derived using the perturbation method and are compared with available nonconformal solutions. The analysis begins with simple polygonal holes in infinite domains, i.e., elliptical holes with a single-term boundary perturbation, and is then generalized to arbitrary polygonal holes in infinite domains, including their degeneration to cracks. Through numerical examples, nonconformal solutions are found to be accurate near the hole but suffer from discontinuity issues due to the nature of nonconformal mappings, whereas perturbation solutions, though less accurate near the hole, improve as the distance from the hole increases. In regard to their complementary characteristics, the two solutions, when strategically combined, can provide reliable results over the entire domain. For finite domains, two special boundary element methods (using the nonconformal and perturbation solutions, respectively) and a hybrid boundary element method are developed, which are more computationally efficient than conventional boundary elements since meshing on the hole boundary is not required. The proposed boundary elements can be used in conjunction with the boundary-based finite element method to analyse domains containing multiple polygonal holes. The analytical solutions and numerical methods presented in this dissertation are verified through comparison with commercial finite element software Ansys.

    摘要 iii ABSTRACT x ACKNOWLEDGMENTS xii CONTENTS xiii LIST OF TABLES xvi LIST OF FIGURES xvii NOMENCLATURE xxiv CHAPTER I INTRODUCTION 1 1.1 Background of research 1 1.2 Scope of dissertation 4 CHAPTER II ANISOTROPIC ELASTICITY 7 2.1 Stroh formalism for coupled in-plane and anti-plane deformations 7 2.2 Decoupling of in-plane and anti-plane deformations 9 CHAPTER III SIMPLE POLYGONAL HOLES 13 3.1 Mappings 13 3.1.1 Requirements of mappings for anisotropic elasticity 14 3.1.2 Conformal mappings for elliptical holes 16 3.1.3 Nonconformal mappings 18 3.1.4 Conformal mappings via perturbation from elliptical holes 22 3.2 Solution with nonconformal mapping 24 3.3 Solution with perturbation method . 26 3.3.1 Full-field solution 26 3.3.2 Strains and stresses 31 3.3.3 Explicit form of hoop stress 32 3.4 Numerical examples 35 3.4.1 Triangular hole in isotropic material under uniaxial tension 37 3.4.2 Rhombic hole in orthotropic material under in-plane shear 41 3.4.3 Oval hole in orthotropic material under anti-plane shear 43 3.4.4 Pentagonal hole in anisotropic material under unidirectional tension 47 CHAPTER IV ARBITRARY POLYGONAL HOLES 52 4.1 Schwarz–Christoffel mapping 52 4.2 Mappings for anisotropic elasticity 55 4.2.1 Nonconformal mappings 55 4.2.2 Conformal mappings via perturbation from elliptical holes 56 4.2.3 Calculation procedure 58 4.3 Full-field solution and hoop stress along the hole boundary 61 4.3.1 Solution with nonconformal mapping 62 4.3.2 Solution with conformal mapping via perturbation 64 4.4 Numerical examples of arbitrary polygonal holes 65 4.4.1 Rounded square hole in isotropic material under uniaxial tension 70 4.4.2 House-shaped hole in orthotropic material under in-plane shear stress 73 4.4.3 Trapezoidal hole in orthotropic material under anti-plane shear stress 77 4.4.4 Chamfered rectangular hole in anisotropic material under biaxial tension 82 4.5 Kinked cracks 86 4.5.1 Mappings 86 4.5.2 Numerical examples 87 CHAPTER V BOUNDARY ELEMENTS METHOD 94 5.1 Green’s function 94 5.1.1 Solution with nonconformal mapping 95 5.1.2 Solution with perturbation method 96 5.1.3 Branch cuts of complex logarithm functions in Green’s functions 101 5.2.3.1 Transformed variable in nonconformal mapping function 101 5.2.3.2 Transformed variable in conformal mapping function 105 5.1.4 Comparison of the solutions 107 5.2 Boundary integral equation 112 5.2.1 BIE with fundamental solutions for general purpose 112 5.2.2 BIE with fundamental solutions for simple polygonal holes 113 5.3 Fundamental solutions 113 5.3.1 Fundamental solution for general purpose 113 5.3.2 Fundamental solution for simple polygonal hole (nonconformal) 114 5.3.3 Fundamental solution for simple polygonal hole (perturbation) 114 5.4 Boundary element methods for finite plates 116 5.4.1 Conventional boundary element method (CBEM) 116 5.4.2 Special boundary element methods (SEBMn, SBEMp) 117 5.4.3 Hybrid boundary element method (HBEM) 118 5.5 Numerical examples 121 5.5.1 Special boundary element methods 124 5.5.2 Hybrid boundary element method 132 CHAPTER VI CONCLUSIONS 143 REFERENCES 145 PUBLICATION LIST 154

    Ahlfors, L. V. (1979). Complex analysis: an introduction to the theory of analytic functions of one complex variable. New York: McGraw-Hill.
    Amestoy, M., & Leblond, J. B. (1992). Crack paths in plane situations—II. Detailed form of the expansion of the stress intensity factors. International Journal of Solids and Structures, 29(4), 465-501. doi:10.1016/0020-7683(92)90210-K
    Bashkankova, E. A., Vakaeva, A. B., & Grekov, M. A. (2015). Perturbation method in the problem on a nearly circular hole in an elastic plane. Mechanics of Solids, 50(2), 198-207. doi:10.3103/s0025654415020090
    Batista, M. (2011). On the stress concentration around a hole in an infinite plate subject to a uniform load at infinity. International Journal of Mechanical Sciences, 53(4), 254-261. doi:10.1016/j.ijmecsci.2011.01.006
    Berger, J. R. (1994). Boundary element analysis of anisotropic bimaterials with special Green's functions. Engineering Analysis with Boundary Elements, 14(2), 123-131. doi:10.1016/0955-7997(94)90088-4
    Brebbia, C. A., Telles, J. C. F., & Wrobel, L. C. (1984). Boundary element techniques: theory and applications in engineering (1st ed.). Heidelberg, Germany: Springer.
    Chauhan, M. M., & Sharma, D. S. (2015). Stresses in finite anisotropic plate weakened by rectangular hole. International Journal of Mechanical Sciences, 101-102, 272-279. doi:10.1016/j.ijmecsci.2015.08.007
    Chauhan, M. M., & Sharma, D. S. (2016). Stress concentration at the corners of polygonal hole in finite plate. Aerospace Science and Technology, 58, 197-206. doi:10.1016/j.ast.2016.08.014
    Chauhan, M. M., Sharma, D. S., & Dave, J. M. (2016). Stress intensity factor for hypocycloidal hole in finite plate. Theoretical and Applied Fracture Mechanics, 82, 59-68. doi:10.1016/j.tafmec.2015.12.005
    Chen, C.-Y. (2020). Numerical Analysis for Degenerate Materials on Complex Variable Formalism. (Master Thesis). National Cheng Kung University, Tainan, Taiwan, R.O.C.
    Chen, E. L., & Ang, W. T. (2013). Special Green’s function boundary element approach for steady-state axisymmetric heat conduction across low and high conducting planar interfaces. Applied Mathematical Modelling, 37(4), 1948-1965. doi:10.1016/j.apm.2012.04.051
    Chen, S., Xia, Z., Feng, F., & Yin, D. (2021). Numerical study on strength and failure characteristics of rock samples with different hole defects. Bulletin of Engineering Geology and the Environment, 80(2), 1523-1540. doi:10.1007/s10064-020-01964-y
    Chen, Y. C., & Hwu, C. (2010). Green's functions for anisotropic/piezoelectric bimaterials and their applications to boundary element analysis. CMES - Computer Modeling in Engineering and Sciences, 57(1), 31-50.
    Chen, Y. C., & Hwu, C. (2014). Boundary element method for vibration analysis of two-dimensional anisotropic elastic solids containing holes, cracks or interfaces. Engineering Analysis with Boundary Elements, 40, 22-35. doi:10.1016/j.enganabound.2013.11.013
    Cheng, X., & Liang, X. (2019). Discussion on the analogy between heat and electric conductions. International Journal of Heat and Mass Transfer, 131, 709-712. doi:10.1016/j.ijheatmasstransfer.2018.11.111
    Chuaqui, T. R. C., Nielsen, M. W. D., Colton, J., Butler, R., & Rhead, A. T. (2021). Effects of ply angle and blocking on open-hole tensile strength of composite laminates: A design and certification perspective. Composites Part B: Engineering, 207, 108582. doi:10.1016/j.compositesb.2020.108582
    Cormier, N. G., Smallwood, B. S., Sinclair, G. B., & Meda, G. (1999). Aggressive submodelling of stress concentrations. International Journal for Numerical Methods in Engineering, 46(6), 889-909. doi:10.1002/(SICI)1097-0207(19991030)46:6<889::AID-NME699>3.0.CO;2-F
    Curreli, C., Viceconti, M., & Di Puccio, F. (2021). Submodeling in wear predictive finite element models with multipoint contacts. International Journal for Numerical Methods in Engineering, 122(15), 3812-3823. doi:10.1002/nme.6682
    Dai, M., & Gao, C.-F. (2014). Perturbation solution of two arbitrarily-shaped holes in a piezoelectric solid. International Journal of Mechanical Sciences, 88, 37-45. doi:10.1016/j.ijmecsci.2014.06.015
    Daoust, J., & Hoa, S. V. (1991). An analytical solution for anisotropic plates containing triangular holes. Composite Structures, 19(2), 107-130. doi:10.1016/0263-8223(91)90018-T
    Denda, M., & Kosaka, I. (1997). Dislocation and point-force-based approach to the special Green's Function BEM for elliptic hole and crack problems in two dimensions. International Journal for Numerical Methods in Engineering, 40(15), 2857-2889. doi:10.1002/(SICI)1097-0207(19970815)40:15<2857::AID-NME195>3.0.CO;2-3
    Driscoll, T. A. (2021). Schwarz–Christoffel Toolbox for conformal mapping in MATLAB [Computer software]. Retrieved from https://github.com/tobydriscoll/sc-toolbox doi:10.5281/zenodo.5245134
    Driscoll, T. A., & Trefethen, L. N. (2002). Schwarz-Christoffel mapping. Cambridge: Cambridge University Press.
    Durelli, A. J., Parks, V. J., & Lopardo, V. J. (1970). Stresses and finite strains around an elliptic hole in finite plates subjected to uniform load. International Journal of Non-Linear Mechanics, 5(3), 397-411. doi:10.1016/0020-7462(70)90003-X
    Dveirin, O. Z., Andreev, O. V., Kondrat’ev, A. V., & Haidachuk, V. Y. (2021). Stressed State in the Vicinity of a Hole in Mechanical Joint of Composite Parts. International Applied Mechanics, 57(2), 234-247. doi:10.1007/s10778-021-01076-4
    Ekneligoda, T. C., & Zimmerman, R. W. (2008). Boundary perturbation solution for nearly circular holes and rigid inclusions in an infinite elastic medium. Journal of Applied Mechanics, 75(1). doi:10.1115/1.2745826
    Fergoug, M., Parret-Fréaud, A., Feld, N., Marchand, B., & Forest, S. (2024). Hierarchical modeling of heterogeneous structures driven by a modeling error estimator. Computer Methods in Applied Mechanics and Engineering, 418, 116529. doi:10.1016/j.cma.2023.116529
    Fricks, C. R., III. (2023). Computational and Experimental Investigation of Mass Reduced Aircraft Wing Ribs. (Master Thesis). Georgia Southern University, Statesboro, GA.
    Gao, H. (1992). Stress analysis of holes in anisotropic elastic solids: conformal mapping and boundary perturbation. The Quarterly Journal of Mechanics and Applied Mathematics, 45(2), 149-168. doi:10.1093/qjmam/45.2.149
    Givoli, D., & Elishakoff, I. (1992). Stress concentration at a nearly circular hole with uncertain irregularities. Journal of Applied Mechanics, 59(2S), S65-S71. doi:10.1115/1.2899509
    Greenspan, M. (1944). Effect of a small hole on the stresses in a uniformly loaded plate. Quarterly of Applied Mathematics, 2, 60-71. doi:10.1090/qam/10101
    Hahn, D. W., & Özişik, M. N. (2012). Heat Conduction (3rd ed.). New Jersey, NJ: John Wiley & Sons.
    Hsu, C. W., & Hwu, C. (2020). Green's functions for unsymmetric composite laminates with inclusions. Proc. R. Soc. A., 476(2233), 20190437. doi:10.1098/rspa.2019.0437
    Hwu, C. (1990). Anisotropic plates with various openings under uniform loading or pure bending. Journal of Applied Mechanics, 57(3), 700-706. doi:10.1115/1.2897080
    Hwu, C. (1992). Polygonal holes in anisotropic media. International Journal of Solids and Structures, 29(19), 2369-2384.
    Hwu, C. (2010). Anisotropic elastic plates. New York, NY: Springer.
    Hwu, C. (2021). Anisotropic elasticity with Matlab. Cham, Switzerland: Springer.
    Hwu, C., Hsieh, M.-L., & Huang, C.-L. (2023). Some Green’s functions for steady-state heat conduction in anisotropic plane media and their application to thermoelastic boundary element analysis. Journal of Thermal Stresses, 46(10), 1103-1126. doi:10.1080/01495739.2023.2232420
    Hwu, C., Hsu, C.-L., & Chen, W.-R. (2017a). Corrective evaluation of multi-valued complex functions for anisotropic elasticity. Mathematics and Mechanics of Solids, 22(10), 2040-2062. doi:10.1177/1081286517728542
    Hwu, C., Huang, S.-T., & Li, C.-C. (2017b). Boundary-based finite element method for two-dimensional anisotropic elastic solids with multiple holes and cracks. Engineering Analysis with Boundary Elements, 79, 13-22. doi:10.1016/j.enganabound.2017.03.003
    Hwu, C., & Kuo, T. L. (2007). A unified definition for stress intensity factors of interface corners and cracks. International Journal of Solids and Structures, 44(18), 6340-6359. doi:10.1016/j.ijsolstr.2007.02.031
    Hwu, C., & Liang, Y. C. (2000). Evaluation of stress concentration factors and stress intensity factors from remote boundary data. International Journal of Solids and Structures, 37(41), 5957-5972. doi:10.1016/S0020-7683(99)00245-0
    Hwu, C., & Wang, W. Y. (1992). Various rigid inclusions in anisotropic media. Journal of the Chinese Society of Mechanical Engineers, 13(1), 10-16.
    Hwu, C., & Yen, W. J. (1991). Green's functions of two-dimensional anisotropic plates containing an elliptic hole. International Journal of Solids and Structures, 27(13), 1705-1719. doi:10.1016/0020-7683(91)90070-v
    Hwu, C., & Yen, W. J. (1993). On the anisotropic elastic inclusions in plane elastostatics. Journal of Applied Mechanics, 60(3), 626-632. doi:10.1115/1.2900850
    Jafari, M., & Bayati Chaleshtari, M. H. (2017). Using dragonfly algorithm for optimization of orthotropic infinite plates with a quasi-triangular cut-out. European Journal of Mechanics - A/Solids, 66, 1-14. doi:10.1016/j.euromechsol.2017.06.003
    Jiang, Y., Jin, L., & Huo, Y. (2021). Unusual stress and strain concentration behaviors at the circular hole of a large monodomain liquid crystal elastomer sheet. Journal of the Mechanics and Physics of Solids, 156, 104615. doi:10.1016/j.jmps.2021.104615
    Jing, Z., Duan, L., & Wang, S. (2024). Buckling optimization of variable-stiffness composite plates with two circular holes using discrete Ritz method and potential flow. International Journal of Solids and Structures, 297, 112845. doi:10.1016/j.ijsolstr.2024.112845
    Kamel, M., & Liaw, B. M. (1991). Boundary element formulation with special kernels for an anisotropic plate containing an elliptical hole or a crack. Engineering Fracture Mechanics, 39(4), 695-711. doi:10.1016/0013-7944(91)90220-U
    Khechai, A., Tati, A., Belarbi, M. O., & Guettala, A. (2019). Numerical Analysis of Stress Concentration in Isotropic and Laminated Plates with Inclined Elliptical Holes. Journal of The Institution of Engineers (India): Series C, 100(3), 511-522. doi:10.1007/s40032-018-0448-4
    Kumar, A., Agrawal, A., Ghadai, R., & Kalita, K. (2016). Analysis of Stress Concentration in Orthotropic Laminates. Procedia Technology, 23, 156-162. doi:10.1016/j.protcy.2016.03.012
    Lekhnitskii, S. G. (1968). Anisotropic plates. New York, NY: Gordon and Breach.
    Lekhnitskii, S. G. (1981). Theory of Elasticity of an Anisotorpic Body. Moscow, Russia: MIR.
    Li, Y., & Zheng, K. (2021). Stress intensity factor analysis of kinked and hole crack in an infinite plate using numerical conformal mapping. Theoretical and Applied Fracture Mechanics, 114, 103022. doi:10.1016/j.tafmec.2021.103022
    Lin, C.-C., & Ko, C.-C. (1988). Stress and Strength Analysis of Finite Composite Laminates with Elliptical Holes. Journal of Composite Materials, 22(4), 373-385. doi:10.1177/002199838802200405
    Lin, Q., Cao, P., Liu, Y., Cao, R., & Li, J. (2021). Mechanical behaviour of a jointed rock mass with a circular hole under compression-shear loading: Experimental and numerical studies. Theoretical and Applied Fracture Mechanics, 114, 102998. doi:10.1016/j.tafmec.2021.102998
    Louhghalam, A., Igusa, T., Park, C., Choi, S., & Kim, K. (2011). Analysis of stress concentrations in plates with rectangular openings by a combined conformal mapping – Finite element approach. International Journal of Solids and Structures, 48(13), 1991-2004. doi:10.1016/j.ijsolstr.2011.03.005
    Lu, A., Zhang, N., Zhang, X., Lu, D., & Li, W. (2015). Analytic method of stress analysis for an orthotropic rock mass with an arbitrary-shaped tunnel. International Journal of Geomechanics, 15(4). doi:10.1061/(asce)gm.1943-5622.0000408
    Madenci, E., Ileri, L., & Kudva, J. N. (1993). Analysis of finite composite laminates with holes. International Journal of Solids and Structures, 30(6), 825-834. doi:10.1016/0020-7683(93)90042-6
    Maksymovych, О. V., & Solyar, Т. Y. (2022). Determination of Stress Concentration Near Dies, Holes, and Cracks in the Half Plane Based on the Method of Integral Equations and Green Solutions. Journal of Mathematical Sciences, 261(1), 162-175. doi:10.1007/s10958-022-05745-8
    Mengsha, S., Chunyu, Z., Yuheng, C., & Biao, W. (2023). Experimental and theoretical evaluation of influence of hole size on deformation and fracture of elastic perforated plate. Mechanics of Materials, 187, 104841. doi:10.1016/j.mechmat.2023.104841
    Muskhelishvili, N. I. (1977). Some basic problems of the mathematical theory of elasticity: fundamental equations plane theory of elasticity torsion and bending. Dordrecht, Netherlands: Springer.
    Nageswara Rao, D. K., Ramesh Babu, M., Raja Narender Reddy, K., & Sunil, D. (2010). Stress around square and rectangular cutouts in symmetric laminates. Composite Structures, 92(12), 2845-2859. doi:10.1016/j.compstruct.2010.04.010
    Nguyen-Hoang, M., & Becker, W. (2022). Open holes in composite laminates with finite dimensions: structural assessment by analytical methods. Archive of Applied Mechanics, 92(3), 1101-1125. doi:10.1007/s00419-021-02095-w
    Pan, E., Yang, B., Cai, G., & Yuan, F. G. (2001). Stress analyses around holes in composite laminates using boundary element method. Engineering Analysis with Boundary Elements, 25(1), 31-40. doi:10.1016/S0955-7997(00)00066-7
    Pan, Z., Cheng, Y., & Liu, J. (2013). Stress analysis of a finite plate with a rectangular hole subjected to uniaxial tension using modified stress functions. International Journal of Mechanical Sciences, 75, 265-277. doi:10.1016/j.ijmecsci.2013.06.014
    Patel, A., & Desai, C. K. (2020). Stress concentration around an elliptical hole in a large rectangular plate subjected to linearly varying in-plane loading on two opposite edges. Theoretical and Applied Fracture Mechanics, 106, 102432. doi:10.1016/j.tafmec.2019.102432
    Qin, Q. H. (1999a). Green's function for thermopiezoelectric plates with holes of various shapes. Archive of Applied Mechanics, 69(6), 406-418. doi:10.1007/s004190050230
    Qin, Q. H. (1999b). Green function and its application for a piezoelectric plate with various openings. Archive of Applied Mechanics, 69(2), 133-144. doi:10.1007/s004190050210
    Rana, R. S., Kumar, J., Singh, I., & Sharma, A. K. (2024). Comparative analysis of drilled and molded holes in short natural fiber reinforced composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 238(3), 493-503. doi:10.1177/14644207231191618
    Rezaeepazhand, J., & Jafari, M. (2010). Stress concentration in metallic plates with special shaped cutout. International Journal of Mechanical Sciences, 52(1), 96-102. doi:10.1016/j.ijmecsci.2009.10.013
    Rice, J. R. (1968). A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics, 35(2), 379-386. doi:10.1115/1.3601206
    Savin, G. N. (1970). Stress Distribution around Holes. Washington, D. C.: NASA.
    Setiawan, N. B., & Zimmerman, R. W. (2020). A unified methodology for computing the stresses around an arbitrarily-shaped hole in isotropic or anisotropic materials. International Journal of Solids and Structures, 199, 131-143. doi:10.1016/j.ijsolstr.2020.03.022
    Sharma, D. S. (2012). Stress distribution around polygonal holes. International Journal of Mechanical Sciences, 65(1), 115-124. doi:10.1016/j.ijmecsci.2012.09.009
    Sharma, D. S. (2015). Stresses around polygonal hole in an infinite laminated composite plate. European Journal of Mechanics - A/Solids, 54, 44-52. doi:10.1016/j.euromechsol.2015.06.004
    Sharma, D. S., & Dave, J. M. (2015). Stress intensity factors for hypocycloidal hole with cusps in infinite anisotropic plate. Theoretical and Applied Fracture Mechanics, 75, 44-52. doi:10.1016/j.tafmec.2014.10.005
    Sih, G. C. (1965). Stress distribution near internal crack tips for longitudinal shear problems. Journal of Applied Mechanics, 32(1), 51-58. doi:10.1115/1.3625783
    Stern, M., Becker, E. B., & Dunham, R. S. (1976). A contour integral computation of mixed-mode stress intensity factors. International Journal of Fracture, 12(3), 359-368. doi:10.1007/BF00032831
    Su, Z., Xie, C., & Tang, Y. (2018). Stress distribution analysis and optimization for composite laminate containing hole of different shapes. Aerospace Science and Technology, 76, 466-470. doi:10.1016/j.ast.2018.01.046
    Tan, L., Ren, T., Dou, L., Yang, X., Qiao, M., & Peng, H. (2021). Analytical stress solution and mechanical properties for rock mass containing a hole with complex shape. Theoretical and Applied Fracture Mechanics, 114, 103002. doi:10.1016/j.tafmec.2021.103002
    Tane, T., Sasaki, T., Miyagawa, M., Kurose, M., & Kimura, K. (2022). Analysis of anisotropic elastic medium with multiple elliptical holes subjected to uniform load of in-plane and out-of-plane shear at infinity. Journal of the Society of Materials Science, Japan, 71(9), 773-780. doi:10.2472/jsms.71.773
    Theocaris, P. S., & Petrou, L. (1986). Stress distributions and intensities at corners of equilateral triangular holes. International Journal of Fracture, 31(4), 271-289. doi:10.1007/BF00044050
    Ting, T. C. T. (1996). Anisotropic elasticity: theory and spplications. New York, NY: Oxford University Press.
    Ting, T. C. T. (2000). Common errors on mapping of nonelliptic curves in anisotropic elasticity. Journal of Applied Mechanics, 67(4), 655-657. doi:10.1115/1.1311961
    Tsai, S. W., & Hahn, H. T. (1980). Introduction to composite materials. Pennsylvania: Technomics.
    Ukadgaonker, V. G., & Kakhandki, V. (2005). Stress analysis for an orthotropic plate with an irregular shaped hole for different in-plane loading conditions—Part 1. Composite Structures, 70(3), 255-274. doi:10.1016/j.compstruct.2004.08.032
    Ukadgaonker, V. G., & Rao, D. K. N. (2000). A general solution for stresses around holes in symmetric laminates under inplane loading. Composite Structures, 49(3), 339-354. doi:10.1016/s0263-8223(00)00070-2
    Woo, C. W., & Chan, L. W. S. (1992). Boundary collocation method for analyzing perforated plate problems. Engineering Fracture Mechanics, 43(5), 757-768. doi:10.1016/0013-7944(92)90006-Z
    Wu, H., Zhao, G., & Liang, W. (2020). Mechanical properties and fracture characteristics of pre-holed rocks subjected to uniaxial loading: A comparative analysis of five hole shapes. Theoretical and Applied Fracture Mechanics, 105, 102433. doi:10.1016/j.tafmec.2019.102433
    Xu, X., Yue, T. M., & Man, H. C. (1999). Stress analysis of finite composite laminate with multiple loaded holes. International Journal of Solids and Structures, 36(6), 919-931. doi:10.1016/S0020-7683(97)00343-0
    Yamashita, D., Kato, H., & Nakazawa, J. (2004). U.S. Patent No. 6,786,452. P. a. T. Office.
    Yasin, B., Qi'Dan, D., Al-Olimat, S., Ayasrah, M., & Almasaeid, H. (2023). Effect of the fibre orientation angles on stress concentration around various shapes of hole in laminated composite plate subject to in-plane loading. Civil and Environmental Engineering, 19(1), 218-223. doi:10.2478/cee-2023-0019
    Zhang, H., Dickson, A. N., Sheng, Y., McGrail, T., Dowling, D. P., Wang, C., Neville, A., & Yang, D. (2020). Failure analysis of 3D printed woven composite plates with holes under tensile and shear loading. Composites Part B: Engineering, 186, 107835. doi:10.1016/j.compositesb.2020.107835
    Zheng, X., & Xu, X. (1999). Stress analysis of finite composite laminates with elliptical inclusion. Computers & Structures, 70(3), 357-361. doi:10.1016/S0045-7949(98)00149-7
    Zucco, G., Rouhi, M., Oliveri, V., Cosentino, E., O’Higgins, R. M., & Weaver, P. M. (2021). Continuous Tow Steering Around an Elliptical Cutout in a Composite Panel. AIAA Journal, 59(12), 5117-5129. doi:10.2514/1.J060668

    無法下載圖示 校內:2030-06-23公開
    校外:2030-06-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE