| 研究生: |
張天豪 Chang, Tien-Hao |
|---|---|
| 論文名稱: |
利用Copula函數評估降雨與暴潮作用下之複合淹水災害風險 Compound flood risk assessment under the influence of rainfall and tide based on copula functions |
| 指導教授: |
張駿暉
Jang, Jiun-Huei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 複合淹水 、Copula模型 、多元回歸 、蒙地卡羅積分法 、氣候變遷 |
| 外文關鍵詞: | Compound flooding, Copula, Multiple regression, Monte Carlo integration, Climate change |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出了一種評估複合淹水風險的方法框架,結合聯合機率Copula模型和水力模式,分別計算複合淹水事件的重現期和三個淹水指標:家戶住宅的平均最大淹水深度、影響家戶數量和家戶損失,通過多元回歸方法和蒙地卡羅積分法推估所有降雨量和潮位組合的淹水指標,並計算淹水指標的重現期評估複合淹水風險,最後評估三種分別採用不同防洪措施的現況情境,以及氣候變遷下的未來情境。當設定家戶水深0.3m為淹水門檻時,現況的防洪保護能力約為10年重現期,結果符合現有排水設施的防洪保護標準,將防洪設施保護標準代入Copula模型後,得到重現期為8.8年,顯示真實的複合淹水風險和統計模型推估值有差異。本研究評估兩倍抽水情境和高腳屋情境的複合淹水風險,結果顯示兩倍抽水情境的保護能力約為16.8年重現期,高腳屋情境的保護能力約為21.3年重現期,也代表本研究建構的複合淹水風險評估方法可以計算防洪措施的真實保護能力。本研究採用升溫最劇烈的路徑評估氣候變遷下世紀末的複合淹水風險,結果顯示在未來情境中相同重現期的平均最大淹水深度、影響家戶數量和家戶損失都有明顯的增幅,而未來情境的防洪保護能力則介於2.36至3.92年重現期,說明世紀末的複合淹水風險大幅增加。未來情境的複合淹水風險主要來自海平面上升和暴潮偏差增加,使沿海地區暴潮溢淹風險增加,也因海面水位高漲導致排水設施無法有效排水進而提升淹水風險,因此沿海地區需要強化防洪措施以面對未來的挑戰。
This study combines a bivariate copula model and a hydraulic model to assess the compound flood risk. Multiple regression and Monte Carlo integration methods were used to estimate the return period of the average maximum flood depth, the number of affected households, and the household losses. The results showed that the return period of the current flood protection capacity is 10 years, with a flood threshold of 0.3m, which matches the drainage system's flood protection standards. Substituting these standards into the copula model yielded a return period of 8.8 years, indicating a difference between the actual compound flood risk and the statistical estimate. This study also assessed compound flood risk under the double-pumping and raised-house scenarios. The results showed that the return period of protection capacity under the double-pumping scenario is 16.8 years, whereas it is 21.3 years under the raised-house scenario. The results of the return period analysis demonstrate that the combined flood risk assessment method developed in this study can estimate the actual protection capacity of flood control measures. This study assessed the combined flood risk at the end of the century under climate change. The return periods of the average maximum flood depth, the number of affected households, and household losses increased significantly in the future scenario. The flood protection capacity return period decreases to 2.36-3.92, indicating a substantial increase in the combined flooding risk at the end of the century. The compound flood risk in the future scenario mainly stems from sea-level rise and storm surge under climate change. Rising sea levels increased the risk of storm surge overflows and decreased drainage in coastal areas. In conclusion, coastal areas need to strengthen flood-prevention measures to address future challenges.
1.王俊寓,林士堯,「AR6 統計降尺度資料說明文件(1.0版)」,https://tccip.ncdr.nat.gov.tw/upload/data_document/20220708151649.pdf,2022。
2.交通部中央氣象署,氣候觀測資料查詢服務,https://codis.cwa.gov.tw/,2025。
3.行政院主計總處,人口及住宅普查,中華民國統計資訊網,https://www.stat.gov.tw/cl.aspx?n=2748,2025。
4.李光敦,「水文學」,五南圖書出版股份有限公司,2005。
5.巫孟璇、蔡智恆、陳金諾、蔡長泰,「暴潮對沿海地區淹水潛勢與淹水風險之影響」,中國土木水利工程學刊,22(4),p387,2010。
6.陳彥丞、陳佳正,「小時雨量產生器應用於高屏地區氣候變遷淹水潛勢評估」,中國土木水利工程學刊,33(6),p461,2021。
7.國家發展委員會,人口推估查詢系統,https://pop-proj.ndc.gov.tw/,2025
8.國家災害防救科技中心,全球災害事件簿,https://den.ncdr.nat.gov.tw/den/,2025。
9.許晃雄、王嘉琪、陳正達、李明旭、詹士樑,「國家氣候變遷科學報告2024:現象、衝擊與調適」,國家科學及技術委員會與環境部聯合出版,2024。
10.黃品淳,「利用人工智慧技術與地貌特徵研發近岸低地淹水模擬方案」,中國土木水利工程學刊,35(1),p11,2023。
11.經濟部水利署,「嘉義排水系統嘉義排水治理計畫」,2008。
12.經濟部水利署,「水利工程技術規範-河川治理篇」,2013。
13.經濟部水利署,「因應氣候變遷之海岸風險評估(1/2)」,2019。
14.經濟部水利署,「嘉義縣一級海岸防護計畫」,2020。
15.經濟部水利署,「氣候變遷對重要供水水系水源水量影響分析」,2022。
16.經濟部水利署,「禦潮水位通盤檢討與氣候變遷衝擊研究」,2024。
17.經濟部水利署,水利法第八十三條之九第二項,「出流管制計畫書與規劃書檢核基準及洪峰流量計算方法」,2025。
18.經濟部水利署,水利資料開放平臺,https://opendata.wra.gov.tw/,2025。
19.經濟部,「水災災害救助種類及標準」,主管法規查詢系統,https://law.moea.gov.tw/LawContent.aspx?id=FL011532,2025。
20.臺灣氣候變遷推估資訊與調適知識平台,https://tccip.ncdr.nat.gov.tw/,2025。
21.劉俊志,「暖化下設計暴雨之變化及其不確定性來源之量化分析」,農業工程學報,71(2),p54,2025。
22.嘉義縣政府水利處,「嘉義縣823熱帶性低氣壓事件因應措施分享」,https://www.ncdr.nat.gov.tw/UploadFile/tblForm/%E8%AD%B0%E7%A8%8B03_108-04-16-0823%E7%86%B1%E5%B8%B6%E6%80%A7%E4%BD%8E%E6%B0%A3%E5%A3%93%E4%BA%8B%E4%BB%B6%E5%88%86%E4%BA%AB-%E5%98%89%E7%BE%A9%E7%B8%A3%E6%94%BF%E5%BA%9C.pdf,2019
23.Akaike, H. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control 19(6), 716-723, 1974.
24.Akter, A., Ataullah, S.M. Compound flooding: A review on assessment framework. J Coast Conserv 29, 77, 2025.
25.Bevacqua, E., Maraun, D., Haff, I. H., Widmann, M., & Vrac, M.. Multivariate statistical modelling of compound events via pair-copula constructions: Analysis of floods in Ravenna (Italy). Hydrology and Earth System Sciences, 2017
26.Bevacqua, E., De Michele, C., Manning, C., Couasnon, A., Ribeiro, A. F. S., Ramos, A. M., Vignotto, E., Bastos, A., Blesić, S., Durante, F., Hillier, J., Oliveira, S. C., Pinto, J. G., Ragno, E., Rivoire, P., Saunders, K., Van Der Wiel, K., Wu, W., Zhang, T., & Zscheischler, J. Guidelines for studying diverse types of compound weather and climate events. Earth S Future, 2021
27.Bibi, T.S., Kara, K. G., Bedada, H. J., & Bededa, R. D. Application of PCSWMM for assessing the impacts of urbanization and climate changes on the efficiency of stormwater drainage systems in managing urban flooding in Robe town, Ethiopia. Journal of Hydrology Regional Studies, 2023.
28.Biondi, D., De Luca, D.L. Rainfall-runoff model parameter conditioning on regional hydrological signatures: application to ungauged basins in southern Italy. Hydrol. Res. 48(3), 714–725, 2017.
29.Breinl, K., Lun, D., Müller-Thomy, H., Blöschl, G. Understanding the relationship between rainfall and flood probabilities through combined intensity-duration-frequency analysis. Journal of Hydrology, 602: 126759, 2021. DOI:https://doi.org/10.1016/j.jhydrol.2021.126759
30.Budhathoki, A., Tanaka, T., & Tachikawa, Y. Assessing extreme flood inundation and demographic exposure in climate change using large ensemble climate simulation data in the Lower Chao Phraya River Basin of Thailand. Journal of Hydrology: Regional Studies, 2023.
31.Callaghan, D., & Hughes, M. Assessing flood hazard changes using climate model forcing. Natural Hazards and Earth System Sciences, 2022.
32.Centre for Research on the Epidemiology of Disasters. 2024 Disasters in Numbers: A Hot and Stormy Year, 2025.
33.Darlington, C., Raikes, J., Henstra, D., Thistlethwaite, J., Raven, E.K. Mapping current and future flood exposure using a 5 m flood model and climate change projections. Natural Hazards & Earth System Sciences, 24(2): 699-714, 2024.
34.Du, H., Fei, K., Gao, L. Assessing compound flood hazards in the Pearl river Delta: A Scenario-Based Integration of trivariate fluvial conditions and extreme storm events. Journal of Hydrology (Amsterdam), 657, Article 133104, 2025.
35.Ehsan, S., Ara Begum, R., Ghani Md Nor, N., & Nizam Abdul Maulud, K. Current and potential impacts of sea level rise in the coastal areas of Malaysia. IOP Conference Series: Earth and Environmental Science. 2019.
36.Feng, Y. et al. Nonstationary flood coincidence risk analysis using time-varying copula functions. Scientific Reports, 10(1): 3395, 2020.
37.Feng, D., Tan, Z., Xu, D., Ruby Leung, L. Understanding the compound flood risk along the coast of the contiguous United States. Hydrology and Earth System Sciences, 2023.
38.Fereshtehpour, M., Najafi, M. R., & Cannon, A. J. Characterizing compound inland flooding mechanisms and risks in North America under climate change. Earth S Future, 2025
39.Ferrarin, C., Lionello, P., Orlić, M. et al. Venice as a paradigm of coastal flooding under multiple compound drivers. Sci Rep 12, 5754, 2022.
40.Gori, A., & Lin, N. Projecting Compound Flood Hazard Under Climate Change With Physical Models and Joint Probability Methods. Earth’s Future, 10(12), 2022.
41.Gironás, J., Roesner, L. A., Rossman, L. A., Davis, J. A new applications manual for the Storm Water Management Model (SWMM). Environmental Modelling & Software : With Environment Data News, 25(6), 813–814, 2010.
42.Gräler, B. et al. Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrol. Earth Syst. Sci., 17(4), 2013.
43.Hallegatte, S., Green, C., Nicholls, R.J., Corfee-Morlot, J. Future flood losses in major coastal cities. Nature Climate Change, 3(9): 802-806, 2013.
44.Heinrich, P., Hagemann, S., Weisse, R., & Gaslikova, L. Changes in compound flood event frequency in northern and central Europe under climate change. Frontiers in Climate, 2023.
45.Hsiao, S.C., Chiang, W.S., Jang, J.H., Wu, H.L., Lu, W.S., Chen, W.B., Wu, Y.T. Flood risk influenced by the compound effect of storm surge and rainfall under climate change for low-lying coastal areas. Sci. Total Environ. 764, 144439, 2021.
46.Karamouz, M., Zahmatkesh, Z., Goharian, E., & Nazif, S. Combined Impact of Inland and Coastal Floods: Mapping Knowledge Base for Development of Planning Strategies. Journal of Water Resources Planning and Management, 141(8), Article 04014098, 2015.
47.Jalili Pirani, F., Najafi, M.R. Nonstationary frequency analysis of compound flooding in Canada's coastal zones. Coastal Engineering, 182: 104292, 2023.
48.Jang, J.H., Chang, T.H., Chen, W.B. Effect of inlet modelling on surface drainage in coupled urban flood simulation. J. Hydrol. 562, 168–180, 2018.
49.Jang, J.H., Hsieh, C.T., Chang, T.H. The importance of gully flow modelling to urban flood simulation. Urban Water J. 16(5), 377–388, 2019.
50.Jang, J.H., & Chang, T. H. Flood risk estimation under the compound influence of rainfall and tide. Journal of Hydrology, 2022.
51.Jang, J.-H., Chang, T.-H., Wu, Y.-M., Liao, T.-E., Hsu, C.-H. Analyzing the Impact of Climate Change on Compound Flooding Under Interdecadal Variations in Rainfall and Tide, Hydrology, pp. 182, 2025.
52.Joe, H. Multivariate Models and Multivariate Dependence Concepts. Chapman and Hall/CRC, 1997.
53.Karahacane, H., Meddi, M., Chebana, F., & Saaed, H. A. Complete multivariate flood frequency analysis, applied to northern Algeria. Journal of Flood Risk Management, 2020.
54.Leonard, M., Westra, S., Phatak, A., Lambert, M., Hurk, B., Mcinnes, K., Risbey, J., Schuster, S., Jakob, D., & Stafford Smith, M. A compound event framework for understanding extreme impacts. Wiley Interdisciplinary Reviews: Climate Change, 5(1): 113-128, 2014.
55.Li, H. C., Kuo, Y. L., Shaw, D., Huang, T. H. The Household Benefits Assessment of the Flood Reduction Plan in a Floodprone Area: A Case Study of Sinwen, Chiayi, Taiwan. Agricultural and Resources Economics 5(2), 41-58, 2008
56.Li, J., Hu, J., Yao, Y., Ren, N. Copula-based joint assessment of the extreme precipitation and storm surge along the coast of mainland China: impact of tropical cyclones. Journal of Hydrology, 662: 134124, 2025.
57.Lian, J., Xu, K., Ma, C. Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network a case study of Fuzhou City, China. Hydrology and Earth System Sciences, 2013.
58.Lima, F.N., Freitas, A.C., Silva, J. Climate Change Flood Risk Analysis: Application of Dynamical Downscaling and Hydrological Modeling, Atmosphere, pp. 1069, 2023.
59.Lin, M.-Y. et al. Formulating a warning threshold for coastal compound flooding: A copula-based approach. Ecological Indicators, 162: 111994, 2024.
60.Liu, C., Hu, C., Zhao, C., Sun, Y., Xie, T., & Wang, H. Research on Urban Storm Flood Simulation by Coupling K-means Machine Learning Algorithm and GIS Spatial Analysis Technology into SWMM Model. Water Resources Management, 38(6), 2059-2078, 2024.
61.Matsumoto, K., Takanezawa, T., Ooe, M. Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model around Japan. Journal of Oceanography, 56: 567-581, 2000.
62.Michalek, A., Done, J.M., Villarini, G. Future Changes in Regional Tropical Cyclone Wind, Precipitation, and Flooding Using Event-Based Downscaling. Earth's Future, 12(6): e2023EF004279, 2024.
63.Mita, K. S., Orton, P., Montalto, F., & Anbessie, T. Accumulating climate change influences on extreme coastal, fluvial, and compound flooding in the upper transition zone. Journal of Hydrology (Amsterdam), 663, Article 134247, 2025.
64.Moftakhari, H.R., Salvadori, G., AghaKouchak, A., Sanders, B. F., & Matthew, R. A. Compounding effects of sea level rise and fluvial flooding. Proceedings of the National Academy of Sciences of the United States of America, 2017.
65.Moftakhari, H., Schubert, J.E., AghaKouchak, A., Matthew, R.A., Sanders, B.F. Linking statistical and hydrodynamic modeling for compound flood hazard assessment in tidal channels and estuaries. Advances in Water Resources, 128: 28-38, 2019.
66.Mukherjee, A., Poonia, V., Swarnkar, S. Assessing compound flood drivers in Peninsular India: Multivariate copula-based approach. Journal of Environmental Management, 395: 127875, 2025.
67.NASA, Sea Level Projection Tool, https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool, 2025.
68.Nasrollahi, F., Orton, P., & Montalto, F. Modeling the Effectiveness of Alternative Flood Adaptation Strategies Subject to Future Compound Climate Risks. Land, 14(9), 1832, 2025.
69.Nelsen, R. B. An introduction to copulas. Springer-Verlag New York, 2006.
70.Ray, T., Stepinski, E., Sebastian, A., & Bedient, P. B. Dynamic Modeling of Storm Surge and Inland Flooding in a Texas Coastal Floodplain. Journal of Hydraulic Engineering (New York, N.Y.), 137(10), 1103–1110, 2011.
71.Razmi, A., Mardani-Fard, H.A., Golian, S., Zahmatkesh, Z. Time-Varying Univariate and Bivariate Frequency Analysis of Nonstationary Extreme Sea Level for New York City. Environmental Processes, 9(1): 8, 2022.
72.Ruan, X., Sun, H., Shou, W., Wang, J. The Impact of Climate Change and Urbanization on Compound Flood Risks in Coastal Areas: A Comprehensive Review of Methods, Applied Sciences, pp, 2024.
73.Saharia, A.M., Zhu, Z., Atkinson, J.F. Compound flooding from lake seiche and river flow in a freshwater coastal river. Journal of Hydrology, 603: 126969, 2021.
74.Salvadori, G., & De Michele, C. Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resources Research 2004.
75.Sampurno, J., Vallaeys, V., Ardianto, R., Hanert, E. Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta. Nonlin. Processes Geophys., 29(3): 301-315, 2022.
76.Santiago-Collazo, F.L., Bilskie, M. V., Hagen, S. C. A comprehensive review of compound inundation models in low-gradient coastal watersheds. Environ. Model. Softw., 119: 166-181, 2019.
77.Schwarz, G. E. Estimating the dimension of a model. Annals of Statistics 6(2), 461–464, 1978.
78.Silva, R.d.S., Lopes, H.F. Copula, marginal distributions and model selection: a Bayesian note. Statistics and Computing, 18(3): 313-320, 2008.
79.Sklar, M. Fonctions de répartition à n dimensions et leurs marges. Université Paris 8, 229-231, 1959.
80.Vangelis, H., Zotou, I., Kourtis, I.M., Bellos, V., Tsihrintzis, V.A. Relationship of Rainfall and Flood Return Periods through Hydrologic and Hydraulic Modeling, Water, pp. 3618, 2022.
81.World Bank. Natural disaster hotspots a global risk analysis. The World Bank. Washington, D.C., 148pp, 2005.
82.Wahl, T., Jain, S., Bender, J., Meyers, S., & Luther, M. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nature Climate Change, 2015.
83.Wang, X., Xia, J., Zhou, M., Deng, S., & Li, Q. Assessment of the joint impact of rainfall and river water level on urban flooding in Wuhan City, China. Journal of Hydrology, 2022.
84.Xu, P. et al. Time-varying copula and average annual reliability-based nonstationary hazard assessment of extreme rainfall events. Journal of Hydrology, 603: 126792. , 2021.
85.Xu, H., Tian, Z., Sun, L., Ye, Q., Ragno, E., Bricker, J., Mao, G., Tan, J., Wang, J., Ke, Q., Wang, S., & Toumi, R. Compound flood impact of water level and rainfall during tropical cyclone periods in a coastal city: the case of Shanghai. Natural Hazards and Earth System Sciences, 22(7), 2347–2358, 2022.
86.Xu, H., Zhang, X., Guan, X. et al. Amplification of Flood Risks by the Compound Effects of Precipitation and Storm Tides Under the Nonstationary Scenario in the Coastal City of Haikou, China. Int J Disaster Risk Sci 13, 602–620, 2022.
87.Xu, K., Wang, C., Bin, L., Shen, R., Zhuang, Y. Climate change impact on the compound flood risk in a coastal city. Journal of Hydrology, 626: 130237, 2023.
88.Zellou, B., Rahali, H. Assessment of the joint impact of extreme rainfall and storm surge on the risk of flooding in a coastal area. Journal of Hydrology, 569: 647-665, 2019.
89.Zheng, F., Westra, S., Leonard, M., Sisson, S.A. Modeling dependence between extreme rainfall and storm surge to estimate coastal flooding risk. Water Resources Research, 50(3): 2050-2071, 2014.
90.Zope, P.E., Eldho, T.I., Jothiprakash, V. Impacts of urbanization on flooding of a coastal urban catchment: a case study of Mumbai City, India. Natural Hazards, 75(1): 887-908, 2015.
91.Zscheischler, J., Westra, S., Hurk, B., Seneviratne, S., Ward, P., Pitman, A., AghaKouchak, A., Bresch, D., Leonard, M., Wahl, T., & Zhang, X. Future climate risk from compound events. Nature Climate Change, 8(6) , 2018.