簡易檢索 / 詳目顯示

研究生: 李冠德
Lee, Chan-Te
論文名稱: 含泥量對於自充填混凝土 性質之影響
Effect of Soil Content on the Properties of Self Compacting Concrete
指導教授: 唐啟釗
Tang, Chii-jau
丁舜臣
Tin, S. C.
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系碩士在職專班
Department of Hydraulic & Ocean Engineering (on the job class)
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 100
中文關鍵詞: 新拌性能硬固性能含泥率自充填混凝土配比設計
外文關鍵詞: property of new mixture, gradation design, self-compacting concrete, property of robustness, soil content ratio
相關次數: 點閱:104下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 混凝土材料變異性較大,尤其是粗細粒料之形狀、含水量、級配、細度模數、含泥量,及摻料品質用量等因素,都是控制混凝土的新拌性質及硬固性質之關鍵。而成份材料的性質對自充填混凝土(Self-Compacting Concrete, SCC)的影響,比起對傳統混凝土的更為敏感。本研究即針對細粒料的含泥量這一項因素,對SCC的影響,安排整套實驗進行研究探討。
    SCC設計強度為5000psi、6000psi、7000psi的三種配比A系列案例。其細粒料含泥率分別為0%、1.25%、2.5%、3.75%、5%。A系列每立方米經加配15kg拌合水成為B系列案例,而細粒料含泥率分別為0%、5%、10%、15%。每一實驗案例,分別測試新拌混凝土性質及硬固混凝土試體各齡期強度。實驗成果顯示,含泥率往上增加時,新拌混凝土的稠度會增加,其自行填充性能也就減低。含泥率5%時,A系列新拌混凝土,完全喪失了流動性。B系列新拌混凝土,在一開始含泥率0%時,已有析離的現象,但隨著含泥率往上增加,新拌混凝土的稠度也跟著增加,在含泥率5%、10%反而有較佳的流動能力。因此可以得知,含泥率的高低會直接影響用水量的多寡。
    實驗結果顯示,SCC之細粒料含泥率的允許值為2.5%,若是骨材含泥量越高的話,則須調整配比之用水量。本研究於拌合每一案例時,泥質是與洗淨的細粒料,及其他拌料,一同進入小型拌和鼓攪拌。充分拌和費時長達七分鐘,使泥質與漿體充分攪和。這種充分攪和作用,在泥質量較少時,因為泥質表面吸附了一些水份,使水膠比略降,反能提昇SCC之硬化強度。至於,泥質量較高時,SCC之稠度大幅提昇,使新拌混凝土失去應有的流動性。至於,預拌廠內之所堆置的細粒料,泥質是現成的附着在粒料表面,而不是於拌時另外添加。因此本項研究,在小型試拌作業上,有參考作用,但尚不足充分代表廠拌實況。顯示本研究結果頗具實用性值得後續研討,期望本研究之成果有助於土建工程對自充填混凝土之推廣及混凝土施工品質之提昇設計。

    Concrete materials can have lots of variability, the shape of the thickness of the granularity, the moisture content, gradation, fineness modulus, sand content, and the quality of the amount of the admixture used are all the key factors that will affect the property of new mixture and the property of robustness of the concrete. The nature of the ingredients has more sensitive effects on self-compacting concrete (SCC) than on traditional concrete. The purpose of this study is to explore the effects that the sand content of the fine aggregates will have on SCC.
    The design robustness of SCC includes 3 mixing A-series scenarios: 5000psi, 6000psi and 7000psi. The sand content ratios of the fine aggregates are: 0%, 1.25%, 2.5%, 3.7% and 5%. A-series scenarios per cubic meter combined with 15kg mixing water will form B-series scenario whose sand content ratios of the fine aggregates are 0%, 5%, 10% and 15%. Each experimental scenario is used to test the nature of the newly mixed concrete and the robustness of the specimens for the hardened concrete in every stage. The experiment results indicate when the sand content ratio increases, the denseness of the newly mixed concrete will increase as well, and its self-compacting property will decrease accordingly. When the sand content ratio reaches 5%, the flow of the newly mixed concrete in A-series scenario will be gone completely. In the newly mixed concrete in B-series scenario, there will be isolation when the sand content ratio is 0%, but as the sand content ratio increases, the denseness of the newly mixed concrete will increase as well, and when the sand content ratio reaches 5% and 10%, there will be better flow ability. Therefore, it is concluded the degree of sand content ratio will have direct effects on the amount of water used.
    The experiment result also indicates the allowed value for the sand content ratio of the fine aggregate of SCC is 2.5%. If the sand content ratio of the aggregate materials is higher, the amount of water used must be modified accordingly. In this study, when each scenario is admixed, the sand is put into small mixing device together with clean fine aggregates and other admixture. It takes 7 minutes to completely blend the sand and the paste. This agitation, when the sand ratio is lower, can increase the hardened robustness, because the surface of the sand absorbs moisture and therefore reduces the hydrogels. When the sand ratio is higher, the denseness of SCC will significantly increase so that the newly mixed concrete will lose its flow capability that it is supposed to have. As to those fine aggregates stored in the concrete mixer, the sands are attached to the surfaces of the fine aggregates, they are not added during blending process. Therefore, this study can serve as a reference for small mixing operations, but it is not sufficient enough to represent the situation that actually happens in the concrete mixers. The results revealed by this study are very practical and should be followed up in subsequent studies. It is expected the results of this study will be of great help to the quality improvement for the self-compacting concrete construction engineering and the popularization of the concrete construction.

    目 錄 摘 要 I Abstract II 致 謝 IV 目 錄 V 表目錄 VII 圖目錄 IX 符號表 XI 第一章 緒 論 1 1-1研究動機 1 1-2研究目的 5 1-3研究範圍與方法 5 1-4本文組織 7 第二章 自充填混凝土 8 2-1自充填混凝土(Self-compating Concrete,SCC)的演進 8 2-2自充填混凝土之配比方法分類 9 2-3自充填混凝土之配比設計步驟 10 2-4影響工作性的因素 13 2-5自充填混凝土使用的現況 16 2-6自充填混凝土未來的展望 18 2-7自充填混凝土材料的介紹 19 第三章 可靠度分析 28 3-1 文獻回顧 28 3-2 安全可靠度分析 29 3-3 機率分佈函數 31 3-4 機率分佈模式 34 3-5 隨機變數關聯性 37 3-6 蒙地卡羅法 38 3-7 可靠度對於混凝土強度的計算案例 39 3-8 可靠度運用於混凝土配比計算 40 第四章 試驗規劃 43 4-1 前言 43 4-2 材料性質 44 4-3 試驗變數 52 4-4 試驗配比計算 53 4-5 試驗項目及設備 59 4-6 自充填混凝土的規範 65 第五章 含泥量對自充填混凝土品質影響試驗 66 5-1 前言 66 5-2 試驗配比表 67 5-3 試驗步驟 68 5-4 結果 70 5-4-1 試拌配比階段 70 5-4-2 強度試驗 72 5-4-3 流動性試驗 77 第六章 結論與建議 94 6-1結 論 94 6-2建 議 96 參考文獻 98 表目錄 表2-1 高性能混凝土與普通混凝土之比較 24 表2-2 活性粉混凝土與其他混凝土之主要力學性質比較 25 表3-1 可靠度指標對應之可靠度 33 表4-1 水泥試驗數據 45 表4-2 爐石粉試驗數據 47 表4-3 飛灰試驗數據 48 表4-4 化學摻料試驗數據 49 表4-5 粗骨材篩分析 50 表4-6 細骨材篩分析 51 表4-7混凝土拌合水試驗報告 51 表4-8 試驗案例總表 53 表4-9 國內學界提供之高流動性混凝土抗壓強度與彈性模數試驗值 55 表4-10國內自充填混凝土抗壓強度與彈性模數試驗值 56 表4-11 初步配比計算值 57 表4-12 對照組配比數值一覽表 58 表4-13 自充填混凝土相關試驗規定 65 表5-3 河砂與碎石砂基本性質 71 表5-1 A系列案例試驗配比一覽 85 表5-2 B系列案例試驗配比一覽 86 表5-4 A系列抗壓強度表 87 表5-5 B系列抗壓強度表 88 表5-6 A系列抗壓強度可靠度計算 89 表5-7 B系列抗壓強度可靠度計算 90 表5-8 流動試驗之平均值與標準差 91 表5-9 A組流動性試驗測試結果 92 表5-10 B組流動性試驗測試結果 93   圖目錄 圖2-1 台北國際金融中心箱型斷面尺寸 26 圖2-2 台北國際金融中心C1柱內配置圖 27 圖3-1 安全餘裕G之機率密度函數 32 圖3-2均勻分布函數圖形 34 圖3-3常態分布函數圖形 35 圖3-4對數常態分布函數圖形 35 圖3-5 Gamma分布函數圖形 36 圖3-6第一型極值分布函數圖形 36 圖4-1 坍流度試驗示意圖 61 圖4-2 V型漏斗設備 62 圖4-3 箱型試驗設備 63 圖4-4 空氣含量試驗設備 64 圖5-1 強度發展曲線 67 圖5-2 骨材級配狀況 71 圖5-3 A系列抗壓強度平均曲線圖 73 圖5-4 B系列抗壓強度平均曲線圖 73 圖5-5 A系列抗壓強度標準差曲線圖 74 圖5-6 B系列抗壓強度標準差曲線圖 75 圖5-7 A系列抗壓強度可靠度指數曲線圖 76 圖5-8 B系列抗壓強度可靠度指數曲線圖 76 圖5-9 抗壓強度變異係數的平均值 77 圖5-10 骨材堆積現象 77 圖5-11 流度試驗平均值 78 圖5-12 流度試驗標準差 78 圖5-13 箱型通過鋼筋試驗平均值 79 圖5-14 箱型通過鋼筋試驗標準差 80 圖5-15 V型漏斗稠度試驗平均值 80 圖5-16 V型漏斗稠度試驗標準差 81 圖5-17 空氣含量試驗平均值 82 圖5-18 空氣含量試驗標準差 82 圖5-17 黏土微結構示意圖 83 圖5-18 普通混凝土與自充填混凝土剖面圖 84

    1. M.L.Shooman,1968,Probabilistic Reliability:An Engineering Approach,McGrawhill,New York,P12-13。
    2. Kalos,M.H. and Whitlock,P.A.,1986,“Monto Caelo Methods”Vol.1,John Wiley and Sons,NEW YORK。
    3. A.Okada et al.,1987,Polym. Prepr.,28,P447
    4. Manno,I.,1999,“Introduction to the Monte Carlo Method” Akademiai Kiado。
    5. Henry, G.R, “ACI Define High-Performance Concrete,” Concrete International,Vol.21,NO.2, pp. 56-57, February 1999.
    6. Nowak, Andrzej S., and Kevin R. Collins,2000,「Reliability of Structures」。
    7. 許桂銘,1990,「混凝土配比設計」高立圖書有限公司。
    8. Russell G. H., “ACI Defines High-Performance Concrete,” Concrete
    9. International, V. 21, No. 2, pp. 56-57, Feb. 1999.。
    10. 陳振川,1994,「高性能混凝土整合推動計劃與國外經驗」結構工程第九卷,第一期,第7-23 頁。
    11. 黃兆龍,1997,「混凝土性質與行為」詹氏書局。
    12. 柴希文、謝明宏,2000,「自充填混凝土配比設計與施工」自充填混凝土產製與施工,台灣營建研究院。
    13. 廖肇昌、羅財怡、游文慧,2000,「自充填混凝土對構件行為影響之探討」自充填混凝土產製與施工,台灣營建研究院。
    14. 詹穎雯,2000,「自充填混凝土簡介與相關規範」自充填混凝土產製與施工,台灣營建研究院。
    15. 中島天一、李宗焜、林培元,2000,「自充填混凝土產製與試驗~台北國際金融中心新建工程」自充填混凝土產製與施工,台灣營建研究院。
    16. 余君臨,2001,「聚醯亞胺/黏土奈米複合材料之物理化學性質與微結構分析」,國立中山大學碩士論文。
    17. 詹穎雯,2003,「混凝土組成材料」混凝土品管,台灣營建研究院。
    18. 苗伯霖,2003,「新拌混凝土性質」混凝土品管,台灣營建研究院。
    19. 簡鴻文,2004,「羧酸強塑劑於高興能混凝土中最佳劑量之研究」屏東科大碩士論文。
    20. 鄭文信,2005,「人造輕質骨材混凝土耐久性之研究」成功大學碩士論文。
    21. 財團法人台灣營建研究院,2005,「自充填混凝土SCC問題分析及產製實作」2005年12月8日至9日研討會專輯。
    22. 陳致銘,2006,「水庫淤泥燒製之中空球及其工程性質」成功大學碩士論文。
    23. 許貫中,2006,「混凝土化學摻料介紹」特殊混凝土與摻料技術講座,財團法人台灣營建研究院。
    24. 廖肇昌,2006,「再生混凝土」特殊混凝土與摻料技術講座,財團法人台灣營建研究院。
    25. 廖肇昌,2006,「活性粉混凝土」特殊混凝土與摻料技術講座,財團法人台灣營建研究院。
    26. 蕭新祿、張良臺,2008,「大陸碎石砂對預拌混凝土之影響」,台灣區預拌混凝土工業同業公會19期,2008年1月。
    27. 李明君,2008,「超高強高性能混凝土之介紹與應用」,「2008先進混凝土技術與應用研討會」,朝陽科技大學營建工程系、台灣區預拌混凝土工業同業公會。
    28. 孫嘉正,2008,「運用蒙地卡羅模擬預測關鍵設備維護時間點之研究-以半導體廠為例」大葉大學碩士論文。
    29. 楊正敏,2009,「爐渣飛灰混凝土變綠巨人」,新聞中的科學第170期,聯合報。
    30. 田永銘,2009,「台灣鹼-骨材反應之成因及案例」混凝土橋梁耐久性即修復技術研討會論文集,國立中央大學。
    31. 柴希文,2009,「配比修正與實習」混凝土配比設計實務講座,財團法人台灣營建研究院。

    下載圖示 校內:立即公開
    校外:2009-09-07公開
    QR CODE