簡易檢索 / 詳目顯示

研究生: 褚宗民
Chu, Tsung-Min
論文名稱: 低溫燒結陶瓷材料(Ba1-xSrx)Mg2(VO4)2 (x = 0–1)在微波頻段之研究與應用
Study and Applications of Low-Firing Ceramics (Ba1-x)SrxMg2(VO4)2 (x = 0–1) at Microwave Frequency
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 110
中文關鍵詞: LTCC微波介電陶瓷帶通濾波器
外文關鍵詞: LTCC, microwave dielectric ceramics, bandpass filter
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要分別介紹兩大部分,第一部分將介紹新開發的低損耗微波介電材料BaMg2(VO4)2,並嘗試利用不同比例的元素取代來補償其共振頻率溫度飄移係數,並用於低溫共燒製程;第二部分將設計一操作在2.45GHz頻段的濾波器,實作於不同尺寸之基板上後探討其微波特性。
    第一部分首先要介紹(Ba1-xSrx)Mg2(VO4)2 (x = 0–1)陶瓷系統之微波介電特性。由實驗得知,以Sr2+來取代Ba2+時,共振頻率溫度飄移係數會往正值補償。當取代比例為x = 0.15,且燒結溫度在960oC時有最佳的微波介電特性,ε r ~ 13.1,Q×f~ 71,000 GHz,τf ~ -4.5 ppm/oC。然而,為了應用在低溫共燒製程,本實驗也測試了Ba0.85Sr0.15Mg2(VO4)2和銀共燒的反應,燒結溫度為930oC並持溫4小時,通過SEM和Line Scan的分析,可得知在陶瓷體與銀的介面處並沒有擴散現象,因此,Ba0.85Sr0.15Mg2(VO4)2為一可應用在LTCC製程且τf ~0的微波介電材料。
    第二部分將設計一操作在2.45GHz的帶通濾波器。主體架構為U型共振器,為了改善在通帶的頻率響應,採用Source-Load coupling的耦合方式,以及在U型共振器內部加入一T-stub,在通帶的兩側各產生一個傳輸零點。最後,我們將電路實作在FR4、Al2O3、Ba0.85Sr0.15Mg2(VO4)2基板上,並量測其頻率響應。由量測的結果可得知,利用高介電係數及低損耗的材料做為電路基板時,確實能達到提升效能和縮小面積的需求。

    In order to obtain a novel low-temperature co-fired ceramics (LTCC), the microwave dielectric properties of (Ba1-xSrx)Mg2(VO4)2 (x = 0–1) ceramics had been investigated. The τf value of (Ba1-xSrx)Mg2(VO4)2 ( x = 0–1) ceramics varied from -40 to 170 ppm/oC as x increased, and a near zero value was obtained at x = 0.15, where the εr and the Q×f value were 13.1 and 71,000 GHz at the sintering temperature of 960 oC for 4 h. Then, we designed and fabricated a bandpass filter on FR4、Al2O3、Ba0.85Sr0.15Mg2(VO4)2 substrates. According to the results of measurements, the performance of the filter was improved by using low-loss dielectric ceramics as the substrate.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1材料的燒結 3 2-1-1材料燒結之擴散方式 3 2-1-2材料燒結之過程 4 2-1-3燒結的種類(固相、液相) 5 2-2介電共振器原理(Dielectric Resonator:DR) 6 2-3微波介電材料之特性 9 2-3-1介電係數(Dielectric Constant:εr) 9 2-3-2品質因數(Quality Factor:Q) 13 2-3-3共振頻率溫度飄移係數(τf) 15 2-4 正方晶系(Tetragonal System) 16 2-5 拉曼光譜與分子振動模態簡介 17 2-5-1 拉曼光譜(Raman Spectra) 17 2-5-2 分子的振動模態 17 2-6 低溫共燒陶瓷技術 (Low Temperature Co-fired Ceramics) 18 第三章 微帶線及濾波器原理 19 3-1 濾波器原理 19 3-1-1濾波器的簡介 19 3-1-2濾波器之種類及其頻率響應 20 3-2 微帶線原理 23 3-2-1 微帶傳輸線的簡介 23 3-2-2 微帶線的傳輸模態 23 3-2-3 微帶線各項參數公式計算及考量 24 3-2-4 微帶線的不連續效應 27 3-2-5 微帶線的損失 34 3-3 微帶線諧振器種類 35 3-3-1 λ/4短路微帶線共振器 36 3-3-2 λ/2開路微帶線共振器 37 3-4 共振器間的耦合形式 39 3-4-1 電場耦合 39 3-4-2 磁場耦合 42 3-4-3 混和耦合 45 3-5 濾波器設計步驟 48 3-5-1 U型微帶線共振器 48 3-5-2 Source-Load Coupling 50 3-5-3 雙模態濾波器原理 51 3-5-4 U型共振器內部加入折疊後的T-stub 53 3-5-5 具兩個傳輸零點的帶通濾波器 55 第四章 實驗程序與量測方法 56 4-1 微波介電材料的製備 56 4-1-1 粉末的製備與球磨 57 4-1-2 粉末的煆燒 57 4-1-3 加入黏劑、過篩 58 4-1-4 壓模成型、去黏劑及燒結 58 4-2 微波介電材料的量測與分析 59 4-2-1 密度測量 59 4-2-2 X-Ray分析 59 4-2-3 SEM分析 60 4-2-4 拉曼光譜分析 60 4-2-5 介電特性量測與分析 61 4-2-6 共振頻率溫度飄移係數之量測 67 4-3 濾波器的製作與量測 68 第五章 實驗結果與討論 70 5-1 BaMg2(VO4)2之微波介電特性 70 5-1-1 BaMg2(VO4)2之XRD相組成分析 70 5-1-2 BaMg2(VO4)2之拉曼光譜分佈 73 5-1-3 BaMg2(VO4)2之SEM分析 74 5-1-4 BaMg2(VO4)2之密度分析結果 76 5-1-5 BaMg2(VO4)2之介電係數分析結果 77 5-1-6 BaMg2(VO4)2之品質因數與共振頻率乘積(Q×f)分析結果 78 5-1-7 BaMg2(VO4)2之共振頻率溫度飄移係數分析結果 79 5-2 (Ba1-xSrx)Mg2(VO4)2 (x = 0–1)之微波介電特性 80 5-2-1 (Ba1-xSrx)Mg2(VO4)2 (x = 0–1)之視密度分析結果 80 5-2-2 (Ba1-xSrx)Mg2(VO4)2 (x = 0–1)之介電係數分析結果 81 5-2-3 (Ba1-xSrx)Mg2(VO4)2 (x = 0–1)之品質因數與共振頻率乘積(Q×f)分析結果 82 5-2-4 (Ba1-xSrx)Mg2(VO4)2 (x = 0–1)之共振頻率溫度飄移係數分析結果 83 5-2-5 (Ba1-xSrx)Mg2(VO4)2 (x = 0–1)之XRD相組成分析 84 5-2-6 (Ba1-xSrx)Mg2(VO4)2 (x = 0–1)之拉曼光譜分佈 87 5-2-7 (Ba1-xSrx)Mg2(VO4)2 (x = 0–1)之SEM分析 90 5-2-8 Ba0.85Sr0.15Mg2(VO4)2與銀共燒之SEM微結構與Line Scan分析 96 5-3 濾波器的模擬與實作 98 5-3-1 使用FR4(玻璃纖維基板)之模擬與實作結果 99 5-3-2 使用Al2O3基板之模擬與實作結果 101 5-3-3 使用Ba0.85Sr0.15Mg2(VO4)2自製基板之模擬與實作結果 103 第六章 結論 106 參考文獻 107

    [1] H. M. O’bryan, J. Thomson, and J. K. Plourde, “A new BaO–TiO2 compound with temperature- stable high permittivity and low microwave loss,” J. Am. Ceram. Soc., 57 [10] 450–453 (1974).
    [2] G. Wolfram and H. E. Göbel, “Existence range, structural and dielectric properties of ZrxTiySnzO4 ceramics (x+y+z = 2),” Mater. Res. Bull., 16 [11] 1455–1463 (1981).
    [3] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, and H. J. Kim, “Microwave dielectric characteristics of ilmenite-type titanates with high Q values,” Jpn. J. Appl. Phys., 33 [9B] 5466–5470 (1994).
    [4] Y. Ohishi, Y. Miyauchi, H. Ohsato, and K. I. Kakimoto, “Controlled temperature coefficient of resonant frequency of Al2O3–TiO2 ceramics by annealing treatment,” Jpn. J. Appl. Phys., 43 [6A] L749–L751 (2004).
    [5] C. L. Huang, T. J. Yang, and C. C. Huang, “Low dielectric loss ceramics in the ZnAl2O4–TiO2 system as a τf compensator,” J. Am. Ceram. Soc., 92 [1] 119–124 (2009).
    [6] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
    [7] D. M. Pozar, Microwave engineering, Addison-Wesley (1998).
    [8] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave SysTFm News., 13, 152–161 (1983).
    [9] D. Kajfez, A. W. Glisson, and J. James, “Computed model field distributions for isolated dielectric resonators,” IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616 (1984).
    [10] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, (1998).
    [11] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期, (2001).
    [12] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, 陳皇鈞(譯), “陶瓷材料概論,” 曉園出版社, (1988).
    [13] 余樹楨, “晶體之結構與性質,” 渤海堂文化公司, (2007)
    [14] M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, J. H. Paik, and B. H. Choi , “Formation and microwave dielectric properties of the Mg2V2O7 ceramics,” J. Am. Soc., 92 [7] 1621–1624 (2009).
    [15] R. Umemura, H. Ogawa, H. Ohsato, A. Kan, and A. Yokoi, “Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic,” J. Eur. Ceram. Soc., 25 2865–2870 (2005).
    [16] R. Umemura, H. Ogawa, and A. Kan “Low temperature sintering and microwave dielectric properties of (Mg3-xZnx)(VO4)2 ceramics,” J. Eur. Ceram. Soc., 26 2063–2068 (2006).
    [17] E. K. Suresh, A. N. Unnimaya, A. Surjith, and R. Ratheesh, “New vanadium based Ba3MV4O15 (M = Ti and Zr) high Q ceramics for LTCC applications,” Ceram. Int., 39 3635–3639 (2013).
    [18] G. G. Yao , and H. W. Zhang , “Novel series of Low-Firing Microwave Dielectrics Ceramics: Ca5A4(VO4)6 (A2+ = Mg, Zn),” J. Am. Ceram. Soc., 96[6] 1691–1693 (2013).
    [19] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI Design Techniques for Analog and Digital Circuits, McGraw-Hill, (1990).
    [20] R.A. Pucel, D. J. Masse, C.P. Hartwig, “Losses in microstrip”, 16 [6] 342–350 (1968)
    [21] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, (2001).
    [22] G. Kompa, Practical Microstrip Design and Applications, Artech House, (2005).
    [23] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, “Microstrip Lines and Slotlines,” Second Edition, Artech House, (1996).
    [24] G. L. Matthaei, L. Young, E. M. T. Jones, “Microwave filters, impedence matching networks and coupling structures,” Artech House, (1980).
    [25] E. J. Denlinger, “Losses of microstrip lines,” IEEE Trans. Microwave Theory Tech. 28 [6] 513–522 (1980).
    [26] X.C. Zhang, Z.Y. Yu, and J. Xu , “Design of Microstrip Dual-Mode Filters Based on Source-Load Coupling,” IEEE Microw. Wireless Compon. Lett., 18 [10] 677–679 (2008).
    [27] M. Zhou, X. Tang, and F. Xiao, “Miniature Microstrip Bandpass Filter Using Resonator-Embedded Dual-Mode Resonator Based on Source-Load Coupling,” IEEE Microw. Wireless Compon. Lett., 20 [3] 139–141 (2010).
    [28] H. A. Wheeler, “Transmission line properties of parallel strips separated by a dielectric sheet,” IEEE Trans. Microwave Theory Tech., 13 172–185 (1965).
    [29] H. A. Wheeler, “Tramsmission line properties of a strip on a dielectric sheet on a plane,” IEEE Trans., MTT-25 631–647 (1977).
    [30] I. Wolff, “Microstrip bandpass filters using degenerate modes of microstrip ring resonator,” Electron. Lett., 8 [12] 163–164 (1972).
    [31] H. Liu, Y. Zhao, L. Shi, and H. Luo, “Dual-Mode Dual-Band Bandpass Filter Design Using Open-Loop Resonators,” Microw. Opt. Techn. Let. 54 [10] 2370–2372 (2012)
    [32] J.S. Hong, H. Shaman, and Y.H. Chun, “Dual-Mode Microstrip Open-Loop Resonators and Filters,” IEEE Trans. Microw. Theory Tech., 55 [8] 1760–1770 (2007)
    [33] B. W. Hakki and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
    [34] W. E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
    [35] P. Wheless and D. Kajfez, “The use of higher resonant modes in measuring the dielectric constant of dielectric resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
    [36] Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method,” IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
    [37]A. Grzechnik, P. F. McMillan, “High pressure behavior of Sr3(VO4)2 and Ba3(VO4)2,”Journal of Solid State Chemistry, 132, 156–162(1997)
    [38] M. Azdouz, B. Manoun, M. Essehli, M. Azrour, L. Bih, S. Benmokhtar, A. Ait Hou, and P. Lazor, “Crystal chemistry, Rietveld refinements and Raman spectroscopy studies of the new solid solution series: Ba3-xSrx(VO4)2 (0≦x≦3),” J. Alloys Compd. 498 (2010) 42–51.

    下載圖示 校內:2024-07-31公開
    校外:2024-07-31公開
    QR CODE